
An Introduction to NFS

Derived from an article by Frederic
Ranal and a presentation by Chavalit
Srisathapornphat

Agenda

Introduction to NFS
Introduction to File Systems
The NFS Protocol
RPC
NFS Server Configuration
Using the NFS Client
Security Considerations
Major differences between Versions 2 & 3

Introduction to NFS

Sharing of data between several computers
A protocol designed for local networks
Needs to be administered with care

Ethernet

pooh.ecl.udel.edu rabbit.ecl.udel.edu piglet.ecl.udel.edu

tigger.ecl.udel.edu

NFS Server

DISK

Introduction to NFS

Aim: to provide the following logical view
pooh:/ rabbit:/ piglet:/

tigger:/

NFS Server's disk:/

root_tigger root_pigletroot_rabbitroot_pooh

.

.

.

.

.

.

.

.

.

.

.

.

Introduction to File Systems

A file system is a way of storing data on a
medium: the way it is organized and
managed
Examples: NTFS, HPFS, DOS, FAT, ext2,
JFS, ISO9660
Every media for data can be considered as
an array of small units holding information
(i.e. blocks)

Introduction to File Systems

Every file system manages these blocks
differently
For example, insert a file that will use two blocks:

File System BOriginal State File System A

Introduction to File Systems

The most widely used on Linux is ext2fs
(extended 2 file system)
Every file is represented by an “inode”

A file descriptor holding, among other things, file
access permissions, physical block addresses holding
data, etc.

The NFS server’s task is to give clients the inodes
they want to access
An NFS server gives an additional net layer
allowing remote machines to handle the inodes

The NFS Protocol

NFS is built from 4 distinct protocols:
nfs

File creation, searching, reading, writing
Authentication and statistics

mountd
Mounting of “exported” systems for access via nfs

nsm
Network Status Monitor
Monitors a client or server machine’s status

nlm
Network Lock Manager
Avoid simultaneous data modification by multiple clients

The NFS Protocol

Application

Presentation

Session

Transport

Network

Link

Physical

NFS
MOUNT

PORT MAPPER
NIS(Network Information System)

XDR (eXternal Data Representation)

RPC (Remote Procedure Call)

TCP, UDP

IP

Ethernet

OSI Model NFS Protocol Layers

The NFS Protocol

There are two NFS Versions: nfsv2 & nfsv3
The protocol revolves around the filehandle

A data structure allow unique identification of a file
system object
Contains the file inode and an entry representing the
device where the file resides

View NFS as a file system embedded within a
file system

The NFS Protocol

local
file

access

NFS
client

TCP/UDP
IP

user
process

NFS
server

TCP/UDP
IP

local
file

access
port 2049

client kernel server kernel

local
disk

local
disk

RPC RPC

File Handles

How does a server know which file/directory the
client needs to access?

At first, client obtains a file handle for root of the
file system
File handle is opaque to the client
Client sends file handle to server when referencing a
file/directory
No need to use the full path names

“The file handle can contain whatever information the
server needs to distinguish an individual file”

File Handles

Please let me mount
your/home directory.

These are attributes
of 3625360

What is FH of "srisatha"
in 3625360 ?

FH of srisatha is
9925949

.

.

.

NFS Client
machine

NFS Server
machine

Mount : When
NFS client starts
up and mounts
home directory

NFS :
When a user login

Example of File Handles
Suppose : (tcpdump-C)
client needs to cat the
file sub2/myname.txt
under the current
directory (~/srisatha)

What is the attribute
of current

dir(9925949) ?
These are attributes
of 9925949

What is FH of "856"
in 9925949 ?

FH of 856 is 7656838

What is FH of "myname.txt"
in 7656838 ?

FH of myname.txt
is 7657235

What is the attribute of
7657235 ?

.

.

.

NFS Client NFS Server

Statelessness

What is statelessness ?
Server does not need to maintain protocol state about
it’s client
Server does not keep previous request information
Client keeps track of all information required to send
requests to the server

Advantage :
If server crashes, no state information lost
Client needs only retransmit a request until the server
responds

Why is idempotent important ?

Suppose : (tcpdump-D)
client needs to remove
the file sub2/myname.txt

Remove OK

Here is the attr and
content of 7656838

Remove "myname.txt"
from 7656838

NFS Client NFS Server

Remove "myname.txt" from
7656838 (retransmitted)

Error : No such file or dir

What is the attribute of
7656838 (dir 856) ?

Idempotent procedures
Can be executed more than once by the server and
still return the same result
Stateless protocol requires idempotent operation
How to makes all NFS requests idempotent:

Server records recently performed operations in cache
Server checks in cache for duplicate requests
Server returns the previous result if it is a duplicate

Should NFS use TCP or UDP ?
From the beginning, NFS used UDP

Most NFS systems were on LAN
High overhead if using TCP

Currently, NFS across WAN needs TCP
Reliability and congestion control
Both sides set TCP’s keep alive option
If server crashes, client opens new TCP connection
If client crashes, server will terminate the connection
after the next keep alive probe

The NFS Protocol

Each relies on Remote Procedure Calls (RPC)
and Portmap (also called rpc.portmap).
An RPC server tells portmap which port will be
used and the managed RPC number
A client contacts portmap to get port number of
desired server program
RPC packets are addressed to the corresponding
port
Use the rpcinfo -p command to obtain
details on services

How does RPC works ?

Client Process

Client
executes

Server
waitsRPC

message
Server starts

Procedure call

Procedure return

Server executes
procedure

Call terminates
RPC return
message

Client
waits

Client
continues

Server Process

RPC versus local procedure call
Error handling:

failures of the server or network must be handled

Global variables:
arguments cannot be passed as global variables

Performance:
slower than local procedure calls

Authentication:
RPC can be transported over insecure networks

List of RPC Programs
program vers proto port service
100000 4 tcp 111 portmapper
100000 3 tcp 111 portmapper
100000 2 tcp 111 portmapper
100000 4 udp 111 portmapper
100000 3 udp 111 portmapper
100000 2 udp 111 portmapper
100003 2 udp 2049 nfs
100003 3 udp 2049 nfs
100003 2 tcp 2049 nfs
100003 3 tcp 2049 nfs
100005 1 udp 32890 mountd
100005 2 udp 32890 mountd
100005 3 udp 32890 mountd
100005 1 tcp 32870 mountd
100005 2 tcp 32870 mountd
100005 3 tcp 32870 mountd

Port Mapper : Analogy
Airport Entrance

Terminal A

Terminal B

Te
rm

in
al

 C

Te
rm

in
al

 D

Terminal E

Terminal F

US109 to Akron

Port Mapper : Analogy
Airport Entrance

US109 to Akron

Flight scheduleTerminal A Terminal F

D12LAX18:00UA0097

D9Detroit16:35US278

B5Akron07:40USA109

B8Cincinnati06:15DE247

GateDestinationDeparture
Time

Flight

Terminal ETerminal B
Te

rm
in

al
 D

Te
rm

in
al

 C

Port Mapper/RPCBIND

Client
Process

Client Kernel Server Kernel

Port Mapper

user
process

user
process

Server
Process

user
process

(1)
register

at start

(2) get port# RPC request

(3) RPC reply with port#

(4) RPC call (request)

(5) RPC reply message

NFS procedures
NFS
Procedures

Functions

LOOKUP Returns a file handle and attribute corresponding to a file name in a specified directory.
MKDIR Create a directory.
RMDIR Delete a directory.
READDIR Read a directory. Used by the Unix ls command, for example.
RENAME Rename a file.
REMOVE Delete a file.
CREATE Create a file.
READ Read from a file, by specify the file handle, starting offset and max. no. of bytes to read

(up to 8192).
WRITE Write to a file.
GETATTR Returns the attributes of a file: type of file, permissions, size, owner, last-access time,

and so on.
SETATTR Set the attributes of a file: permissions, owner, group, size,and last-access and last-

modification time.
LINK Create a Unix hard link to a file.
SYMLINK Create a symbolic link to a file.
READLINK Returns the name of the file to whidh the symbolic link points.
STATFS Returns the status of a file system. Used by the Unix df command, for example.

Format of RPC call
IP header 20 bytes

UDP header 8

Transaction ID (XID) 4
Send direction (0) 4
RPC version (2) 4
Program number 4
Version number 4

Procedure number 4

Credentials up to 408 bytes

Verifier up to 408 bytes

Procedure call parameters N

common for all
Sun RPC

procedure call

depends on specific
procedure being

called

Format of RPC reply

IP header 20 bytes

UDP header 8

Transaction ID (XID) 4
Send direction (1) 4

Status (0=accepted) 4

Verifier up to 400 bytes

Accept status (0=success) 4

Procedure results N

common for all
Sun RPC

procedure

depends on
specific procedure

NFS Server Configuration

One configuration file: /etc/exports
Defines a location, a list of authorized clients, and
options
Client identified by

Machine name
Wildcards on a domain name
A netgroup (if NIS is used)
An IP address

Options include: rw, ro, root_squash,
all_squash, anonuid

NFS Server Starting
Start rpc.mountd and rpc.nfs
Optionally start rpc.statd and rpc.lockd
Use rpcinfo –p to check if working
Files:

/var/lib/nfs/rmtab contains client information
/var/lib/nfs/etab contains detailed export
information
/proc/fs/nfs/exports contains list of clients
/var/lib/nfs/xtab contains explicit machine
names

If /etc/export is updated use exportfs
command to inform servers

Client Access

Use mount command:

Update /etc/fstab to have device mounted at
startup

Type of file system

mount –t nfs –o nosuid,hard,intr server:/u/data
/myu/data

Device to mount

Mount point on local system

User app will
hang if server

crashes

User app can be
interrupted on hang

Disable suid/sgid bits

Client Access

/dev/dasda1 swap swap defaults 0 0
/dev/dasdb1 / ext2 defaults 1 1
/dev/dasdc1 /home ext2 defaults 1 2

/dev/dasdd1 /MDISK/0200 ext2 defaults 1 3
/dev/dasde1 /MDISK/0290 ext2 defaults 1 4
/dev/dasdf1 /MDISK/0210 ext2 defaults 1 5

alf7.software-ag.de:/FS/fs0820 /FS/fs0820 nfs
intr,rsize=1024,wsize=1024,soft,bg,retry=1000
daeux42:/vol/vol2/fs1028 /FS/fs1028 nfs
intr,rsize=1024,wsize=1024,soft,bg,retry=1000
daeux40:/vol/vol0/fs1005 /FS/fs1005 nfs
intr,rsize=1024,wsize=1024,soft,bg,retry=1000
daeux40:/vol/vol0/fs1021 /FS/fs1021 nfs
intr,rsize=1024,wsize=1024,soft,bg,retry=1000,vers=2

Security Considerations

Implicit trusted relationship between server and
client
Client cannot blindly trust server

Use the nosuid option on mount command
May use noexec option to forbid execution

Server cannot blindly trust client
Use the root_squash to map root to nobody
anonuid and anongid can be used to change map
Forbid default access using /etc/hosts.deny

Establish good firewall rules

nfsv2 v nfsv3

The file handle in v2 is a fixed-size array of 32
bytes. With v3 it becomes a variable-length array
up to 64 bytes. A variable-length in XDR is
encoded with a 4-byte count, followed by the
actual bytes. This reduces the size of the file
handle on implementations such as UNIX that
only need about 12 bytes, but allows non-UNIX
implementations to maintain additional
information.

nfsv2 v nfsv3

v2 limits the number of bytes per READ or
WRITE RPC to 8192 bytes. This limit is
removed in v3, meaning an implementation
over UDP is limited only by the IP
datagram size (65535 bytes). This allows
larger read and write packets on faster
networks.

nfsv2 v nfsv3

File sizes and the starting byte offsets for
the READ and WRITE procedures are
extended from 32 to 64 bits, allowing
larger file sizes.
A file's attributes are returned on every call
that affects the attributes. This reduces the
number of GETATTR calls required by the
client.

nfsv2 v nfsv3

WRITEs can be asynchronous, instead of
the synchronous WRITEs required by v2.
This can improve WRITE performance.

nfsv2 v nfsv3

One procedure was deleted (STATFS) and seven
were added:

ACCESS check file access permissions
MKNOD create a UNIX special file
READDIRPLUS returns names of files in a directory along with
their attributes
FSINFO returns the static information about a filesystem
FSSTAT returns the dynamic information about the filesystem
PATHCONF returns the POSIX.1 information about a file
COMMIT commit previous asynchronous writes to stable
storage

Version 2 & Version 3 Mixes

“When an NFS connection is made to a drive, the NFS client tries to talk
using the [v3] protocol (it asks the NFS server for a response to the NULL
[v3] procedure). If that fails, then [v2] is all that will be used. If is
succeeds, then we assume that [v3] is available, and we will use the [v3]
async-write procedure and the [v3] readdirplus procedure. If either of
these procedures generates an OPNOTSUP failure during normal
operation[,] we fall back to [v2]. All other ancillary operations (file
locking, create, remove, etc.) are done using [v2], since we need a v2 path
anyway and the operations are the same. It is important to realize that [v3]
has some features which are a tremendous boon (readdirplus in particular
speeds things up tremendously) and other features which are interesting
for other reasons ([v3] locks support 64-bit offsets and lengths, but this is
not particularly interesting for NT which needs only 32-bit values).”

	An Introduction to NFS
	Agenda
	Introduction to NFS
	Introduction to NFS
	Introduction to File Systems
	Introduction to File Systems
	Introduction to File Systems
	The NFS Protocol
	The NFS Protocol
	The NFS Protocol
	The NFS Protocol
	File Handles
	File Handles
	Example of File Handles
	Statelessness
	Why is idempotent important ?
	Idempotent procedures
	Should NFS use TCP or UDP ?
	The NFS Protocol
	How does RPC works ?
	RPC versus local procedure call
	List of RPC Programs
	Port Mapper : Analogy
	Port Mapper : Analogy
	Port Mapper/RPCBIND
	NFS procedures
	Format of RPC call
	Format of RPC reply
	NFS Server Configuration
	NFS Server Starting
	Client Access
	Client Access
	Security Considerations
	nfsv2 v nfsv3
	nfsv2 v nfsv3
	nfsv2 v nfsv3
	nfsv2 v nfsv3
	nfsv2 v nfsv3
	Version 2 & Version 3 Mixes

