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Abstract

In this paper, we illustrate a Mobile Wireless Vehicular Environment Simulation (MoVES) framework for the parallel
and distributed simulation of vehicular wireless ad hoc networks (VANETs). The proposed framework supports extensi-
ble, module-based and layered modeling, and scalable, accurate and efficient simulation of vehicular scenarios integrated
with wireless communication and mobile services/applications. The vehicular layer includes models for vehicles, synthetic
and trace-driven mobility, driver behavior, GPS-based street maps, intersection policies and traffic lights. The wireless
communication layer currently includes models for physical propagation, and a network protocol stack including IEEE
802.11 Medium Access Control, up to the Application layer. MoVES provides a platform for microscopic modeling
and simulation-based analysis of wireless vehicular scenarios and communication-based services and applications, like
Intelligent Transportation Systems, communication-based monitoring/control and info-mobility services. The framework
includes design solutions for scalable, accurate and efficient parallel and distributed simulation of complex, vehicular com-
munication scenarios executed over cost-effective, commercial-off-the-shelf (COTS) simulation architectures. Dynamic
model partition and adaptation-based load balancing solutions have been designed by exploiting common assumptions
and model characteristics, in a user-transparent way. Test-bed performance evaluation for realistic scenarios has shown
the effectiveness of MoVES in terms of simulation efficiency, scalability, adaptation and simulation accuracy.
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1. Introduction

Technology advances in portable devices, embed-
ded systems and wireless networking have contrib-
uted to the marriage of mobile computing and
communication for supporting new pervasive ser-
vices and applications. As an example, implementa-
tion guidelines for a new class of mobile services for
.
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vehicle-drivers assistance and safety are the mission
of worldwide Intelligent Transportation System
(ITS) research programs [1,2]. The integration of
positioning and multiple sensor capabilities,
installed on-board vehicles [3], and specific wireless
technologies for vehicular environment will enable
car-to-car, car-to-infrastructure mobile communica-
tion and Vehicular Ad Hoc Networks (VANETs)
[1,7,3,8–10]. These technologies include Dedicated
Short Range Communication (DSRC) IEEE
802.11p Wireless Access for Vehicular Environment
(WAVE) [4], and ISO TC204 Continuous Air inter-
faces-Long and Medium Range (CALM) [5,6].
VANETs can be considered as a mix of mobile ad
hoc and sensor networks [3]: opportunistic commu-
nication up to intermittent/stable access to the
Internet is possible, depending on the deployed
wireless infrastructures. Distributed and coordi-
nated communication-based services realized on
top of VANETs are expected to improve safety
(e.g., car accident reduction), real-time monitoring
and equalization of traffic flows and parking
resources, and the support of real-time info-mobil-
ity services about traffic jams, accidents, weather
and dynamic travel route optimization [11,12].
Moreover, infrastructure-based inter-vehicle com-
munication (IVC) systems may enable a wide set
of vehicular killer applications, ranging from Inter-
net access, e-payment and infotainment services.

A new generation of adaptation-based protocols
and applications for VANETs are currently
explored by some recent research projects headed
by research institutes and car manufacturers [7–
10]. The complex protocol architecture and conver-
gence of wireless communications in vehicular sys-
tems is the subject of current research projects,
e.g., the Cooperative Vehicle to Infrastructure Sys-
tem (CVIS) project [2] and the Network on Wheels
(NOW) project [8]. In order to promote the intro-
duction of novel applications based on IVC systems,
it is essential to demonstrate the effectiveness of
such protocols and service architectures over realis-
tic environments by using accurate and fine-grained
methodologies for the analysis [13]. Experimental
characterization of IVC [14] may confirm the feasi-
bility of ITS systems, under possibly different sce-
narios and service paradigms (e.g., client/server vs.
P2P).

Computer simulation is used as a fine-grained
and cost-effective support for analysis: the modeling
of each area, vehicle and driver behavior can be
accurate, and this would make it possible to evalu-
ate both complex and hypothetical scenarios, which
are impractical to realize as a real testbed. On the
other hand, the adoption of simulation techniques
for the analysis of large-scale, dynamic and complex
vehicular networks, and related wireless communi-
cation-based services, creates severe problems in
terms of simulation resources and simulation per-
formance. Large data structures defining the state
of complex model entities have an impact on mem-
ory requirements. Fine-grained simulation of urban
traffic and wireless communication scenarios may
easily involve thousands of causally interacting enti-
ties, each one characterized by local policies and
attributes [15]. In a simulation, the individual evolu-
tion of a massive number of entities, the dynamic
correlation effects due to mobility and to the local
broadcast nature of the wireless transmissions, and
the wireless signal propagation effects in urban sce-
narios [16] greatly increase computational require-
ments. Unfortunately, a sequential simulation of a
real scenario with a large number of complex model
entities (like vehicles running distributed services,
and their wireless communications) may become
computationally infeasible on a single physical exe-
cution unit (PEU) [17,18]. Solutions based on paral-
lel computing architectures, like Single Instructions
Multiple Data (SIMD) architectures have been con-
sidered in PARAMICS [19]: this approach may be
useful under homogeneous modeling assumptions
(that is, concurrently executed code updates differ-
ent data structures each one representing the state
of a homogeneous instance of the model entities).
On the other hand, parallel and High-Performance
Computing (HPC) architectures have high cost
and require modelers to have expertise in parallel
programming, to exploit the architecture potential.
Parallel and distributed simulation (PADS) [20]
offers a cost-effective technology to exploit concur-
rent computation over different PEUs. In this way,
the simulation can be supported by low-cost aggre-
gate computation and memory resources. In addi-
tion, the approval in 2000 of the IEEE 1516
Standard for Modeling and Simulation High Level
Architecture (HLA) [6] has fostered the creation
of middleware frameworks for PADS. Advantages
of HLA-based PADS middleware include the sup-
port for integration of heterogeneous simulators,
model reuse, and the solution of main simulation
issues in a transparent way, from the user’s
viewpoint.

In this paper, we present a novel framework
named Mobile Wireless Vehicular Environment
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Simulator (MoVES), for the parallel and distributed
simulation of urban mobility and wireless communi-
cation over vehicular ad hoc networks. A parallel
and distributed simulation is implemented as a con-
current execution of Logical Processes (LP). In our
approach, each physical processor runs an LP in
charge of managing the execution of a subset of
model entities: static entities like streets, traffic
lights, intersections, and mobile vehicle entities with
their wireless communication stack. In the simula-
tion, interactions among model entities are imple-
mented by exchanging time-stamped event
messages (that is, message passing) between the cor-
responding LPs. If the message passing and syn-
chronization overheads are designed and managed
in a judicious way, a parallel or distributed simula-
tion offers potential speedup thanks to the concur-
rent execution of computation tasks, and may
result in high scalability at low-cost, thanks to the
possible aggregation of computation, memory and
communication resources of commercial off-the-
shelf (COTS) systems. This would be useful for
urban traffic simulation, as explored in [17,21,18].
The first version of the MoVES simulator presented
in [22] was implemented from scratch as a concur-
rent execution of sequential simulators, coordinated
by the kernel of a PADS middleware called
Advanced RTI System (ARTIS) [23–25]. ARTIS is
a middleware for generalized parallel and distrib-
uted simulation partially compliant with the High
Level Architecture (HLA) standard IEEE 1516 [6].
In the first version of MoVES, each simulator was
in charge of managing the coordinated execution
of a portion of the simulation model. Initialization
policies for uniform model allocation, load balanc-
ing, and entity migration functions were defined as
a part of the MoVES framework. The main draw-
backs of this approach were: the initial model parti-
tion, load balancing and entity allocation were
based on static policies in the initialization phase,
with some limitations that will be illustrated in Sec-
tion 4, and the entity migration function was not
completely user-transparent, being partially
included in the model code. To cope with these lim-
itations, the MoVES framework has been com-
pletely re-designed in this paper, with support
provided by the ARTIS simulation middleware
[23–25]. In the following, we will refer to the
MOVES framework in general when discussing
common features and implementation issues. More
specifically, we will refer to the MOVES I imple-
mentation, and to the MOVES II implementation,
to illustrate the differences between the first and sec-
ond framework implementations, respectively. The
new implementation of MoVES (MoVES II)
defined in this paper has many additional advanta-
ges, illustrated in detail in Section 3, including
user-transparent, dynamic and adaptation-based
entity allocation and load balancing (both commu-
nication and computation), and synchronization
and communication overhead reduction. This trans-
lates to simple model implementation, dynamic
adaptation-based load balancing under generalized
model assumptions, and simulation efficiency, scala-
bility and accuracy, as shown in testbed perfor-
mance evaluation for realistic model scenarios in
Section 6.

The paper is organized as follows: Section 2
describes related work and existing solutions for
PADS and monolithic simulation of vehicular and
wireless systems; Section 3 illustrates the layered
framework architecture designed for modeling and
simulation of vehicular traffic and wireless commu-
nication; Section 4 illustrates the design and imple-
mentation of the proposed PADS architecture,
including adaptation-based computation- and com-
munication-load balancing and communication
overhead reduction solutions; Section 5 sketches
the definition of a testbed vehicular and wireless
communication model; Section 6 illustrates some
performance analysis results, based on realistic sim-
ulation scenarios (downtown area of the city of
Bologna) to show the scalability and performance
of the proposed PADS framework; Section 7 pre-
sents conclusions and future work.

2. Related work

Many vehicular-mobility simulation studies are
based on fine-grained models that describe the
behavior of individual entities instead of the behav-
ior of (macroscopic) aggregate vehicular flows. Sev-
eral simulators have been developed with various
solutions to support both model complexity and
scalability characteristics: VISSIM [26], PARAM-
ICS [19,27] and SimTraffic [28] are some of the most
successful commercial tools for simulation of com-
plex, dynamic traffic scenarios, with high level of
modeling detail, and support for realistic models,
analysis and rendering. In general, to the best of
our knowledge, such simulators do not include
modeling support for wireless communication. In
addition, the execution of simulation for very large
vehicular models coupled with wireless radio
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communication models, and network-based appli-
cations and services, may have a significant impact
on scalability and performance issues. The integra-
tion of vehicular traffic and wireless communication
models in VANET simulation environments have
been proposed in recent works. CARISMA [10] is
a traffic simulator which has been coupled with
the Java-based AppSim tool to obtain a traffic and
VANET simulation environment [29]. CORSIM
[30] is a tool defined to model and simulate traffic
in Atlanta, GA, which has been federated in a
distributed simulation framework with Qualnet, a
commercial wireless network simulator [31].
STRAW [13] is a traffic mobility and wireless net-
work model simulated using the SWANS simulation
tool [32]. A vehicular-mobility model for the net-
work simulator (ns-2) is proposed in [33].

Only a few simulation packages currently sup-
port fine-grained event-based traffic models for
PADS simulation. In some cases, the models are
tightly-coupled with a PADS synchronization
algorithms, by reducing the model portability and
reuse. Alternative distributed implementations of
PARAMICS have been proposed: in [17,34]; the
divide-and-conquer concept is applied to the
PARAMICS traffic simulation, by splitting the sim-
ulation map into sub-areas (called tiles), and execut-
ing the simulations of tiles on a cluster of PEUs
connected by high-speed Ethernet links. Vehicle
entities migration among different PEUs has been
implemented to control synchronization overheads.
A similar concept is presented in [18], in which syn-
chronization among the LPs is managed by an
external entity. HLA-based distributed simulation
of traffic scenarios is considered in [21], and in
[30]: a simulation is composed of federated compo-
nents, each one executed in a common event-space
with coordinated time-management scheme.

A set of simulation tools and models have been
proposed to specifically assist in the modeling and
simulation of wireless systems [35]. The list includes
the open source monolithic network simulator
(ns-2) [36], Omnet++ [37], and some powerful com-
mercial tools like Opnet [38] and Qualnet [31]. In
general, the scalability problem of massive wireless
systems simulation has been investigated under
PADS implementations in preliminary work
[39,31]. The Parallel Distributed Network Simulator
(PDNS) [40] is a parallel and enhanced version of
the widely adopted Network Simulator (ns) [36],
developed by the PADS research group at Georgia
Tech. The simulator is based on the concept of fed-
erated simulation of multiple instances of ns sched-
ulers. The Georgia Tech Network Simulator
(GTNetS) [41] is a network simulation environment
for large-scale networks. GTNetS supports the dis-
tribution of a single simulation topology on either
a network of loosely coupled workstations, a
shared-memory symmetric multiprocessing system,
or a combination of both. The Dartmouth Scalable
Simulation Framework (DaSSF) [42] is a C++ par-
allel and distributed simulation framework based on
message passing (using MPI) running a combina-
tion of shared-memory and distributed-memory
execution architectures. The new version (named
iSSF, [43]) will support HLA interoperability, real-
time simulation, and human-interaction capabili-
ties. MAISIE [39] is a C-based simulation language
proposed for sequential and parallel execution of
discrete-event simulation of mobile wireless systems.
The Telecommunications Description Language
(TED) [44] is an object-oriented simulation lan-
guage that can be used to model communication
systems, supported by the Georgia Tech Time Warp
(GTW) [44], an optimized parallel simulation kernel
for parallel and distributed simulation. TED has
served as the basis for the implementation of WiP-
PET [45], a parallel simulator designed to model
the radio propagation, mobility and protocols of
wireless networks. In SwiMNet [46], mobility is
assumed to be not correlated to wireless communi-
cation: a pre-computation of the mobility patterns
of mobile hosts is done to know in advance the
effects of mobility, and to optimize parallel and dis-
tributed simulation of wireless PCS networks.
GloMosim [47] is a simulation environment for
wireless and wired network systems based on the
Parsec parallel discrete-event simulation kernel.
QualNet [31] is a complete and efficient commercial
tool derived from GloMoSim. It supports both
monolithic simulations and parallel simulations. It
is reported to scale up to 10’s of thousands of nodes
and it includes a complete and detailed library of
protocol models for wireless systems. Qualnet
options include the support for HLA & Threaded
Communication Modules. SWANS [32] is a Java-
based scalable wireless network simulator built on
the top of JiST, a high-performance discrete-event
simulation engine. OPNET [38] is a commercial
framework for modeling and simulation of wired
and wireless communication systems. It includes a
large library of implemented protocol models. The
tool supports discrete-event, hybrid and analytical
simulation; it runs in both sequential and parallel
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simulation mode, and supports HLA and co-simu-
lation technologies.

A summary of motivations, new characteristics
and advanced methodologies specifically imple-
mented in the MOVES framework for the parallel
and distributed simulation of VANET scenarios is
reported in Section 3.1.

3. The parallel and distributed simulation architecture

In this section we illustrate the aims, the motiva-
tions, and the logical structure of a PADS architec-
ture for modeling and simulation of wireless
vehicular networks. Our PADS framework has the
following aims:

• Scalability: by exploiting aggregate computation
and memory resources of different PEUs, simula-
tion of massive models can be supported;

• Transparency: by exploiting PADS primitives
implemented by the ARTIS middleware, the dis-
tributed model implementation should be as
transparent as possible to the modeler;

• Adaptation-based overhead reduction and load
balancing: by exploiting PADS primitives and
load balancing heuristics implemented by the
ARTIS middleware, we defined adaptation-based
solutions to initialize, allocate and migrate model
entities over COTS simulation architectures.
Dynamic adaptation improves the utilization of
shared resources and the simulation performance
by reducing message passing and synchronization
overheads between LPs;

• Software modularity and reuse: the simulation
tool and modeling architecture allow the compo-
sition and reuse of module-based model compo-
nents, including modeling and simulation
management modules.

3.1. Motivation and previous work

A number of available vehicular traffic simula-
tors (i) are commercial products, (ii) do not support
distributed/parallel simulation, or (iii) do not
include models for the wireless networking simula-
tion. A federation of existing traffic and wireless
simulators, like the ones described in Section 2, is
possible only if all simulators implement a common
interoperability standard, like IEEE 1516 [6]. In
general, even if the performance and compatibility
characteristics of federated simulators are good,
the performance of such an approach may be poor
due to: (i) sub-optimal utilization of resources, (ii)
lack of a coordination scheme for resources adapta-
tion and load balancing, and (iii) lack of exploita-
tion of model characteristics and assumptions. For
these reasons, we developed a novel framework
(named Mobile Wireless Vehicular Environment
simulator, MoVES) for the fine-grained (micro-
scopic) modeling and simulation of realistic traffic
scenarios, wireless networks and communication-
based services and applications. The first implemen-
tation of the MoVES framework (MoVES I in the
following) proposed in [22] was realized as a self-
contained simulation framework, based on parallel
execution of coordinated sequential simulators.
Each simulator was synchronized by exploiting the
ARTIS parallel and distributed simulation middle-
ware [24]. Many assumptions, and runtime optimi-
zation solutions, were implemented at the
modeling framework layer. The MoVES I imple-
mentation has some drawbacks: (i) the optimization
approach is based on strong assumptions, (ii) the
optimization functions are model-dependent, and
(iii) the optimization functions are local to each
sequential simulator, and may lead to sub-optimal
global performance. Details about these issues will
be illustrated in Sections 4.3.2, 4.4.1 and 6.1. In this
paper, MoVES has been completely re-designed and
re-implemented on a layered PADS architecture (see
Fig. 1). A new implementation of the MoVES
framework (MoVES II in the following) is now real-
ized as a distributed simulation, based on additional
ARTIS middleware functionalities. This new lay-
ered approach has potential advantages, illustrated
in the following Section.

3.2. The PADS architecture description

By looking at the PADS architecture (Fig. 1),
three separate layers are defined: the MoVES frame-
work layer, the ARTIS middleware layer, and the
physical execution units (PEUs) layer.

Starting from the bottom of Fig. 1, the PEU
layer represents the physical computation and com-
munication system supporting the parallel and dis-
tributed simulation. In general, a physical
execution unit (PEU) is defined as an autonomous
processing unit, connected to other PEUs by net-
work hardware. A PEU may have shared-memory
multiprocessor architecture and multi-threading
CPUs, or a single processor architecture. In our
approach, each physical processor runs a Logical
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Process (LP) in charge of managing the execution of
a subset of model entities. In general, a single Log-
ical Process execution cannot be split over multiple
CPUs. Each CPU can allocate many different LPs.
The communication support is provided by
shared-memory message passing between LPs on
the same PEU, and by LAN network communica-
tion up to Internet-based communication, between
LPs on different PEUs.

The ARTIS layer includes the middleware for the
management of parallel and distributed simulations
over heterogeneous execution architectures. ARTIS
is written in C, it provides bindings for C/C++ and
Java modeling frameworks. It implements many
solutions to support and to optimize the parallel
and distributed simulation of massive, dynamic
and complex system models over heterogeneous
execution architectures [25]. ARTIS design and
implementation is still an ongoing activity, and
more details can be found in [24,25]. For the pur-
poses of this paper, the ARTIS middleware is
sketched for illustrating the support provided to
the MoVES framework. The ARTIS middleware
provides service APIs to MoVES, associated with
the functions implemented in middleware modules.
The ARTIS Communication Manager implements
scalable communication functions between LPs,
see Fig. 1. This is obtained by exploiting data mar-
shalling solutions and selection of efficient network
protocols for the physical communication layer.
As an example, the communication is implemented
by low-overhead message passing between CPUs
with shared memory, Reliable-UDP between PEUs
connected by reliable high-performance LANs, and
TCP/IP between remote PEUs connected by the
Internet. The Synchronization Manager implements
policies to coordinate the events execution and state
updates of distributed LPs, that is, to ensure that
simulated events are processed in causal order.
The Data Distribution Manager (DDM) module is
in charge of managing the data distribution among
LPs implementing a parallel and distributed simula-
tion. In our approach, the distributed simulation
architecture is based on a global sharing of a subset
of model state information (as an example, the posi-
tion of vehicle model entities). Appropriate DDM
techniques are implemented to reduce the update
cost of the shared information. This is a major dif-
ference with respect to the MOVES I implementa-
tion in [22], realized as a coordinated execution of
sequential simulators, without information-sharing
support. The new approach introduces controlled
communication overheads, due to the additional
amount of communication required when periodic
state sharing is performed. On the other hand, the
new approach introduces advantages in (i) the sim-
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plification of real-time monitoring functions, (ii) the
exploitation of ARTIS load balancing heuristics, in
a way transparent to the MoVES framework, (iii)
performance gain, under realistic scenarios and
assumptions, as shown in the performance evalua-
tion Section 6.1. The Migration Manager module
implements different functions, including communi-
cation- and computation-load balancing based on
runtime migration of model entities between the
PEUs. The ARTIS migration implementation and
load balancing heuristics are general and parame-
ter-based. They have been carefully designed to
reduce overheads and to ensure adaptation to the
model and to the simulation architecture character-
istics, as will be described in Section 4.

The MoVES layer is written in Java, and it
includes three modeling sub-layers: (1) the applica-
tion sub-layer allows the user to model communica-
tion-based services and applications, (2) the
networking sub-layer allows the user to model wire-
less (and wired) technologies and protocol architec-
tures, network infrastructures (if any), static
devices, medium and signal propagation character-
istics, and (3) the vehicular sub-layer allows the user
to model vehicles with and without mobile network
devices, realistic street topologies, driver behavior,
traffic scenarios and traffic management policies. A
detailed architecture of the MoVES layer is shown
in Fig. 2. The MoVES application sub-layer
includes models of communication-based services
and applications. Services and applications running
on top of virtual devices can be easily modeled by
using an approach based on socket-like APIs pro-
vided by the model of the network protocol suite.
At the Network sub-layer, MoVES implements the
model components defining a protocol stack for net-
work communication devices. Device technologies,
and static device infrastructures can be defined, if
any are needed. The Vehicular sub-layer provides
extensible modeling of realistic traffic scenarios,
and mobile wireless devices installed on vehicles.
Specifically, street model components include
streets, lanes, intersections, intersection policies
and traffic lights. Vehicle model components may
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include wireless devices. Driver model components
include psycho-physical attitude, mobility model
and path preferences. The traffic model components
include route management policies, intra- and inter-
segment models, sketched in Section 5.1. In addi-
tion, the MoVES layer includes service modules: a
parser component allows initializing and feeding
model entities with data obtained from digital
GPS maps, wireless infrastructure maps, and syn-
thetic and trace-driven data sources. The serializa-
tion and de-serialization module is in charge of
serializing (as byte-streams) the state information
of model entities, to be migrated between different
PEUs by ARTIS. Not shown in Fig. 2, a logging
and data monitoring utility supports saving and
analyzing traces and pre-defined performance fig-
ures. A prototype rendering application supports
trace animation (as an example, car mobility and
wireless transmissions), both at runtime, and offline.

4. Design and implementation of MoVES framework

In the following we illustrate the design and imple-
mentation of the PADS architecture for modeling
and simulation of wireless vehicular networks
described in Section 3. Verification and validation
of the proposed simulation framework and related
models have been performed during the design and
implementation phases, and have demonstrated the
correct functionality of the simulation execution
platform, and the expected degree of model accuracy.

The simulation framework proposed in this
paper may potentially support different tasks under
a layered modeling architecture (see Fig. 2). At the
vehicular layer, (i) modeling and analysis of realis-
tic, detailed areas of interest, including GPS-based
street maps, lanes, intersections, traffic lights and
related policies, (ii) modeling of vehicles and driver
psycho-physical attitude, (iii) modeling of synthetic
or realistic trace-driven mobility models [15], traffic
patterns and positive/negative attraction points (like
dense work areas at 8.00am and 6.00pm, respec-
tively), (iv) modeling of traffic policies [19,13,29,
26] and the impact of ‘‘what if’’ management
assumptions [48]. At the wireless communication
layer: (v) modeling of wireless communication sce-
narios, supported by opportunistic VANETs and
infrastructure-based communication networks
[13,14,48], wireless propagation models, and a net-
work protocol stack including physical and MAC
technology libraries (e.g., IEEE 802.11) up to the
application layer. At the application layer, simu-
lated processes of target applications/services can
be virtually immersed in the simulated scenario.

4.1. Time-stepped synchronization scheme

Different PADS communication and synchroni-
zation solutions have been proposed. In this work
we consider a conservative time-stepped synchroni-
zation scheme [20]: simulated time t is advanced
by a time-step only after events scheduled at time
t have been managed. A synchronization phase is
needed to deliver new event-messages and to update
model entities in order to maintain a causal order of
events before the next time-step execution. This syn-
chronization, managed by the ARTIS Synchroniza-
tion module, is one overhead factor of the PADS
approach. We selected the conservative time-
stepped scheme because it is simple, it offers the
opportunity to implement scalable solutions for
multi-layered models, and to implement migration-
based load balancing schemes specifically designed
to exploit the characteristics of the considered mod-
els. Optimistic solutions [20] would need costly
state-saving management, which would not be
appropriate under the migration scheme we adopted
for load balancing in this middleware framework. In
addition, the time-step duration can be adapted by
the simulation middleware, depending on the gran-
ularity of events of interest for the analysis. As an
example, in a vehicular traffic simulation, the time-
step could be quite large, since the granularity of
events can be assumed in the order of a tenth of a
second (e.g., the reaction time of a vehicle driver).
In a simulation of a wireless scenario the time-step
could be in the order of microseconds (e.g., a slot-
time of IEEE 802.11 Medium Access Control proto-
col). When both models are coupled under the same
simulation framework, as an example, to study the
effects of mobility on wireless communication, or
the effect of wireless communication info-services
on the mobility of vehicles, the time-step length
could be dynamically managed by the simulation
middleware. This enhancement is considered a
future work activity for the MoVES framework.

4.2. Simulation performance issues

Beyond scalability, one motivation of the PADS
approach is to obtain simulation performance
speedup. The main performance problem of a paral-
lel and distributed simulation is to obtain the max-
imum advantage of concurrent computation of
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events, while reducing communication and synchro-
nization overheads needed for PADS coordination.
The speedup can be measured as the ratio between
the amount of Wall Clock Time (WCT) required
for completing the same simulation test under differ-
ent simulation approaches. Speedup is a normalized
index of the overall time required for simulation:
speedup values greater than one imply a gain in sim-
ulation performance. A speedup can be obtained by
increasing hardware performance, by increasing the
degree of computation parallelism (that is, the num-
ber of PEUs), and by reducing the computation,
communication and synchronization overheads.
Unfortunately, from a speedup viewpoint, tradeoffs
must be considered in the implementation of PADS:
in general, the adoption of high-performance hard-
ware is costly, and the increase on parallelism trans-
lates in high communication and synchronization
overheads. The optimal balancing of speedup trade-
offs is hard to define a priori, because dynamic fac-
tors bias the optimal balancing at runtime. As an
example, the rate of interactions between model
entities, and the performance of hardware commu-
nication resources (e.g., latency of a shared LAN)
may show unpredictable variations during the simu-
lation execution, biasing the balancing of communi-
cation and synchronization overheads. The amount
of computation required to manage simulated
events and model state updates, and the utilization
of computation resources (e.g., CPU load of shared
multi-programmed PEU architectures) can vary in
an unpredictable way during the simulation execu-
tion, biasing the load balancing of computation
resources. For these reasons, in the proposed mid-
dleware, we do not assume the system and network
resources to be allocated for the simulation in an
exclusive way. In addition, we considered two clas-
ses of generalized and low-cost solutions to improve
the simulation efficiency: (i) communication- and
computation-overhead reduction, and (ii) dynamic
communication- and computation-load balancing.

4.3. Communication and computation overhead

reduction

We summarize two approaches that have been
followed for overhead reduction in preliminary
and in current implementation of MoVES.

4.3.1. Terminology

For the sake of clarity, we define some formal
terminology. We call a ‘‘simulated area’’ or simply
‘‘area’’ the model of the space populated by simu-
lated entities. As an example, in our experiments,
the simulated area is the downtown area of the city
of Bologna. A simulated area can be partitioned in
regular units called ‘‘cells’’. An arbitrary collection
of adjacent cells is called a ‘‘region’’. A ‘‘mobile

entity’’ is a model entity which moves in the simu-
lated area (as an example, a vehicle). The concept
of ‘‘model entity migration’’ is the transfer of (static
or mobile) model-entity’s data-structures and
management from one ‘‘home-LP’’ to another ‘‘for-

eign-LP’’. Based on the communication architecture
connecting the PEUs, we define three classes of con-
nectivity for LPs: ‘‘SHM-connected LPs’’ are LPs
interacting via (very fast) shared memory, ‘‘LAN-

connected LPs’’ are LPs interacting via (fast) LAN
technology, and ‘‘I-connected LPs’’ are remote LPs
interacting via (slow) Internet connections. The con-
cept of ‘‘space proximity’’ of model entities indicates
that the model entities are near to each other (that
is, Space-neighbors, ‘‘S-neighbors’’) in the simulated
area. The concept of ‘‘allocation proximity’’ of
model entities (that is, Allocation-neighbors, ‘‘A-

neighbors’’ model entities) is intended as the fact
that model entities are allocated (and efficiently
communicating) on the same ‘‘home-LP’’, or on
tightly-coupled SHM-connected LPs. A ‘‘Causal

Set’’ (C-set) for event E is the collection of model
entities causally influenced by the occurrence of
event E. As an example, the C-set of a wireless
transmission event contains all the wireless receivers
in the transmission range.

4.3.2. MoVES I: Communication and computation

overhead reduction

The MoVES I implementation was based on a
coordinated execution of concurrent simulators.
Each simulator was implemented as a single LP exe-
cuted over a single CPU. Each LP was assumed to
manage the set of model entities positioned in a stat-
ically defined region of the simulated area. Compu-
tation overhead reduction was based on the use of
efficient data structures and smart algorithms for
event-management and the state-update of model
entities. Communication overhead reduction solu-
tions were implemented to reduce the cost (latency)
of communication and synchronization between
LPs. To this end, we assume that the hardware
architecture supporting LP communication is com-
posed of communication resources with different
performance: as an example, shared memory
between LPs on the same PEU, local area network
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technology between a local cluster of PEUs, up to
Internet communication between remote PEUs
(see Fig. 1). In general, the support of a PADS mid-
dleware includes message passing primitives, for
notifying events and updates to LPs in charge of
managing the simulation of model entities. As an
example, an event-message notification is needed
between two different LPs A and B, when the simu-
lated event generated by a model entity X, managed
by LP A, has a causal effect on at least one model
entity Y managed by LP B.

In wireless and vehicular models, the amount of
event correlation and causality between simulated
model entities depends on their ‘‘space proximity’’.
In other words, the S-neighbor entities in the simu-
lation area show a strong causal correlation of
events. We illustrate this concept with an example
taken from our model of interest: in a scenario
where a wireless transmission event is originated
by a vehicle, the event influences all the S-neighbor
vehicles positioned in the simulated area, within
the wireless transmission range. In other words,
the C-Set of wireless transmission events includes
a significant subset of the S-neighbor entities of the
transmitting vehicle. A possible solution to reduce
communication overhead is to send event-message
notifications only to destinations in the C-Set of
the generated event. In general, we can assume this
result is accomplished by well-designed PADS mid-
dleware solutions for Data Distribution manage-
ment. One additional solution to further reduce
communication overheads is the following: the C-
Fig. 3. Example of map partitions created by three diff
Set of events should be managed by a minimal num-
ber of LPs (possibly, one LP), and such LPs should
belong to the class of the best connected communi-
cation architectures, like SHM-connected LPs. If
this condition could be maintained, few efficient
communications between a few LPs would be suffi-
cient to satisfy all the event-communication
requirements.

Intuitively, one solution is to allocate the model
entities on the LPs, and the LPs on the PEU
architecture, such that the maximum number of
S-neighbor model entities in the simulated area
become A-Neighbor model entities, that is, entities
managed over the best connected LPs. This would
reduce the communication overhead. To implement
this solution, in the MoVES I implementation, we
defined three static policies for dividing the simu-
lated area in cells, and to cluster adjacent cells into
regions (see Fig. 3).

The regions assigned to the LPs are defined by
aggregating adjacent cells with three possible poli-
cies: (P1) Equal Stripes approach, which aggregates
the map cells into a set of stripes with the same area
(number of cells), (P2) Balanced Stripes approach,
which produces different regions (stripes) containing
the same number of intersections, and (P3) Greedy
Approach, which creates macro-cells of clustered
adjacent cells by equalizing the number of intersec-
tions in efficient way. The greedy algorithm pro-
duces an equalized N-partition of the map (being
N the number of LPs) with a cell-merging approach
described in [22].
erent area mapping algorithms used in MoVES I.
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In this approach, each intersection and vehicle
entity was assumed as a homogeneous computation
unit. By balancing the number of crossings in the
regions, and by assuming a uniform distribution
of vehicle entities in the area, both balanced stripes
and greedy algorithms would create map-depen-
dent, computation-balanced partitions. Such final
partitions (called regions) are depicted as colored
areas in Fig. 3.

To summarize, each region is statically allocated
on one single LP, such that a high number of S-neigh-

bor model entities are allocated as A-neighbors model
entities over SMH-connected LPs. Unfortunately,
this scheme has to cope with two problems: (p1) since
each LP only manages entities in its allocated region,
mobile entities crossing the region boundaries have
to be migrated to a different LP managing the desti-
nation region, and (p2) any static ideal allocation of
regions (and their model entities) on LPs, based on
‘‘space proximity’’ communication-overheads opti-
mization, would be quickly disrupted due to mobile
entities changing their position. As an example, a
mobile vehicle X initially positioned in a cell of an
urban area, managed by LP A at simulated time t,
may change position at time (t + k) by approaching
the area boundary. In this way, the mobile vehicle
entity could be ‘‘surrounded’’ by foreign model
entities managed by the foreign LP B. If the LP B
is allocated on a PEU with low communication per-
formance, this would originate a flow of external
event-messages dynamically increasing the commu-
nication overheads.

The migration of model entities was defined as a
service of the MoVES I implementation [22], pri-
marily because it was needed for implementing the
coordinated simulators execution (see the problem
p1 above). Migration was implicitly used as a com-
munication overhead reduction solution, because
the mobile entity migration maintains the clustering
of the S-neighbor entities under the same LP (that
is, contributing to solve the problem p2).

The migration policy of MoVES I was not based
on heuristics. It was model-based, with a simple and
straightforward definition: when a mobile entity
(that is, a vehicle) crosses the area boundary man-
aged by its own home-LP, the model entity migra-
tion is performed to the destination-LP.

4.3.3. MoVES II: Communication and computation

overhead reduction

Some facts can be summarized before proceeding
with the illustration of the MoVES II implementa-
tion guidelines: (i) in the MoVES I implementation,
the migration scheme was model- and area- (region)
dependent, and only mobile entities crossing the
area boundaries were migrated; (ii) model causality
in wireless vehicular models may be considered as
an abstraction of the ‘‘spatial proximity’’ concept;
(iii) mobile entities, like vehicles in simulated vehic-
ular scenarios, dynamically change their S-neighbor
set during the simulation, and in this way, (iv) com-
munication overhead reduction schemes based on a
static association between LP and pre-defined
regions (approximating a clustering of the S-neigh-
bor sets), will see a decrease in their effectiveness,
eventually; (v) dense event-generation is produced
by wireless communication scenarios, compared
with traffic simulation scenarios, hence the wireless
scenario assumptions may have a dominating effect
on cost reduction policies. All these guidelines have
been considered in the MoVES II implementation,
as illustrated in the following.

In the MoVES II implementation, the model
entity migration has been made almost transparent
to the modeling layer: only the serialization and
de-serialization of migrating entities (data struc-
tures) are provided by MoVES, and migration prim-
itives are implemented by the ARTIS middleware.
In addition, in the MoVES II implementation, the
migration scheme has been extended to all model
entities (that is, not only the mobile ones). More-
over, the assumption of a static allocation of area
regions on the LPs has been relaxed. The new
approach allows extending the use of the entity
migration functionality, as a dynamic adaptation
scheme, under the control of multiple heuristics
defined in the ARTIS middleware. This can be
exploited to perform dynamic communication over-
head reduction, and dynamic computation- and
communication-load balancing. The new MoVES
II implementation allows relaxing many assump-
tions made in the first implementation, including
the fact that now migration can be triggered by heu-
ristics, and not only triggered by entities crossing
static area boundaries. This allows defining new
adaptation-based policies, for clustering model enti-
ties on LPs under more general and adaptive com-
munication reduction guidelines, as an example,
based on ‘‘spatial proximity’’ and ‘‘interaction
rate’’. Fig. 4 illustrates an example of the new
approach implemented in MoVES II to realize
migration-based adaptive communication-overhead
reduction. By looking at Fig. 4, the MoVES simu-
lated area shows the position of mobile vehicles
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(as dots). The color of dots identifies the LP (and
the corresponding PEU) managing the vehicle
entity. Black vehicles are managed by LP A on
PEU A, and white vehicles are managed by LP B
on PEU B. In this example, we assume that the allo-
cation of black and white vehicles was initially
defined in an optimal way, based on a static area-
partition and a static allocation-scheme (that is, all
white/black vehicles were in the proximity of each
other and all white/black vehicles were managed
on LP B/A). Anyway, the simulated mobility of
vehicles could quickly produce a scenario like the
one depicted in Fig. 4, during the simulation. In
Fig. 4(left) the X vehicle is surrounded by white
vehicles. The X vehicle simulates a wireless trans-
mission event which must be notified as an event-
message to all the S-neighbors entities within the
transmission range (that is, the C-set of the trans-
mission event generated from X, denoted with thin
arrows departing from X). One local event notifica-
tion message is exchanged via shared memory
between X and the other black vehicle, implemented
on the same LP, in Fig. 4(left). The remaining 4
external event notification messages will reach the
external LP B on PEU B, being transmitted via
LAN technology. The Local Communication Ratio
(LCR) is defined as the ratio between the number of
communications internally performed by an LP,
with respect to the total of communications of the
same LP. Intuitively, the LCR illustrates how the
migration-based clustering of model entities is able
to reduce the communication overhead of the simu-
lation. The LCR for the event management in Fig. 4
is defined as LCR = 1/(4 + 1) on the LP A manag-
ing X. This means that low-overhead communica-
tion is exploited only with 20% probability by LP
B. If we assume that a migration-based heuristic is
defined to implement a communication overhead
reduction, the migration of vehicle X could be
implemented from LP A on PEU A, to LP B on
PEU B. This would lead to the scenario depicted
in Fig. 4(right). In this case, the new LCR is
obtained as LCR = 4/(1 + 4) = 80% for the same
scenario, and for future execution of events
originated by X on LP B. The idea of maintaining
highly-interacting neighbor entities under the
management of the same LP can be implemented,
by migrating model entities between LPs at run-
time, based on dynamic estimates like the LCR. In
this way, the mobile vehicle X could be dynami-
cally migrated on the new home-LP B, which
includes a majority of interacting entities (see
Fig. 4, right).

Figs. 5 and 6 show a visual snapshot of the traffic
simulation in the city of Bologna, by illustrating the
effect of the MoVES II migration scheme. The street
map shows vehicles positions as dots, and colors
indicate which LP manages the vehicle entity simu-
lation. Fig. 5 shows the initial random allocation of
vehicle entities over three simulation LPs. Fig. 6
shows the effects of the MoVES II migration based
on ARTIS heuristics for communication overhead
reduction obtained after a few simulated time-steps.
The migration scheme keeps vehicles clustered, by
maintaining highly-interacting neighbors under the
management of the same LP.

The new migration scheme is also adopted for
load balancing mechanisms in MoVES II, under
general heuristics, assumptions and scenarios, as
illustrated in the following Section 4.4.2.



Fig. 5. Initial random vehicles allocation over three simulation
LPs (dots colors indicate LPs).

Fig. 6. Runtime allocation of vehicles over three simulation LPs,
under the effect of MoVES II migration scheme.
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4.4. Dynamic communication- and computation-load

balancing

In this section we shortly summarize two
approaches that have been followed for dynamic
communication and computation load balancing,
in the MoVES I and in the MoVES II implementa-
tions, respectively.
4.4.1. MoVES I: Dynamic communication and

computation load balancing

In the MoVES I implementation [22], some model
and system assumptions were considered as the basis
for the proposed computation-load balancing solu-
tion. In MoVES I, each LP was assumed to manage
a statically defined region of the whole simulated
area. The main assumption concerning load balanc-
ing was that the LP’s computation load was propor-
tional to the size of respectively simulated regions.
More specifically, we assumed that the number of
computation-intensive entities in the region man-
aged by an LP, like street-crossings and vehicles,
were statically balanced in the initialization phase
of model allocation. Three initial area-allocation
policies were investigated (see Section 4.3.2) to find
solutions for static computation-load balancing in
[22]. In addition, computation-load balancing was
based on the assumption that mobile model-entities
(vehicles) had homogeneous computation cost
and uniform distribution in the simulated area.
Pseudo-random mobility models, like the Random
Waypoint, were used to maintain the assumptions
on uniform distribution of mobile model entities.
As a consequence of the above assumptions, the ini-
tial region-allocation phase (Section 4.3.2) was
implicitly a static policy for computation-load bal-
ancing between the LPs. It is worth noting that
CPUs and memory resources supporting the execu-
tion of simulation LPs were assumed to be homoge-
neous. These assumptions may be difficult to meet in
real simulation system implementations and scenar-
ios. As an example, at the system level, PEUs with
heterogeneous performance and variable back-
ground load would violate the assumptions consid-
ered. The same violation may occur if the hot-spot
traffic scenarios (like congested traffic areas) and
attraction points are present in the model.

4.4.2. MoVES II: Dynamic communication- and

computation-load balancing

MoVES II required a significant re-implementa-
tion effort: a distributed simulation framework,
managed by the ARTIS PADS middleware, has
replaced the coordinated execution of independent
simulators realized in MOVES I. The main differ-
ence is that the middleware functions now imple-
ment a shared state of the whole simulation on
every LP. This fact has advantages and drawbacks.
Advantages include the possibility to implement
simulation monitoring functions on each LP, and
new middleware solutions for overhead reduction
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and load balancing, based on general assumptions.
The main drawback is the additional amount of
communication overhead needed to maintain the
shared state information. As we will show in the
design illustration and performance evaluation
sections, under worst case scenarios, advantages will
balance the overhead of this new implementation.

In the new implementation, a dynamic computa-
tion-load balancing is controlled by the heuristics
defined in the ARTIS Migration module. The
implemented approach is simple and general, in
order to capture the essence of the problem at the
middleware layer, without critical assumptions.
Each LP is monitored during the simulation by
the load balancing heuristics. The heuristics imple-
mentations are discussed in Section 4.5. In a time-
stepped synchronization scheme, like the one
adopted in this framework, unified computation-
and communication-load balancing can be defined
as follows: each LP must complete a round of com-
putation and communication (synchronization)
with the other LPs, at the same Wall Clock Time.
Intuitively, it is important that all LPs get synchro-
nized for advancing to the next time-step of simu-
lated time, with the minimum Wall Clock Time
difference. In fact, all LPs advance the simulated
time synchronously with the slowest LP. If one LP
is early with respect to others reaching the synchro-
nization barrier, this means that some more compu-
tation load could be used to fill the gap and to
alleviate overloaded LPs. On the other hand, if
one LP is late with respect to others, its computa-
tion overload should be eliminated. It is worth not-
ing that the above condition is sufficient for load
balancing, without discriminating between compu-
tation- and communication-resources performance.
In other words, the real achievement is not given
by a symmetry in the utilization of resources, and
by the utilization of all available resources, but is
given by the homogeneous result in the composition
of two costs: the computation and the communica-
tion needed for performing the parallel and distrib-
uted simulation. This approach can be effective on a
COTS, heterogeneous, shared and distributed com-
putation and communication architecture like the
one we assume for our testbed simulations. One of
the best results achievable with this scheme is that
the distributed simulation architecture can proac-
tively allocate new computations on more available
PEUs, or dismiss adopted PEUs. The proactive
management policy depends on the fact that allo-
cated PEUs positively or negatively contribute in
the tradeoff between concurrent execution and com-
munication overheads. As an example, computa-
tionally efficient PEUs could be dismissed because
their communication latency is slowing down the
overall system performance. Conversely, one CPU
with only 10% residual CPU time could be included
because its small computation potential is effective
when coupled with highly efficient communication
architectures.

4.5. ARTIS migration heuristics

A detailed illustration of the ARTIS heuristics
can be found in [23,25]. In this work we sketch the
implementation of heuristics used for controlling
migrations. Migrations are the basis for load bal-
ancing and communication overhead reduction
solutions implemented in MoVES II. MoVES II
allows the migration of all model entities. In other
words, in MoVES II, the LPs are no longer stati-
cally initialized and associated with regions. Now,
the LPs can incrementally migrate a set of entities,
under the control of migration heuristics. This
would lead to an adaptive clustering of model enti-
ties, whose allocation on the LPs is independent
with respect to entity positions in the simulated
area, and completely based on the ‘‘entity interac-
tion’’ concept, as shown in Fig. 4. The set of model
entities allocated on the LPs should dynamically
map the subset of entities having the highest rate
of interactions during the current phase of the sim-
ulation. This dynamic mechanism will be exploited
to realize adaptation-based clustering, that is, to
capture the dense interactions (event-messages com-
munication) without speculating on the density
assumption of model entities, and by optimizing
both load balancing and communication overheads.
In conclusion, the load balancing mechanism is
implemented, without assuming a static partition
and allocation of the simulated area, and by main-
taining the ‘‘proximity’’ clustering of model entities
for the reduction of communication overheads. This
would enable load balanced execution of scenarios
characterized by non-uniform entity distributions
and event-generation density, like in dynamic hot
spots originated at simulation runtime, for which
it was impossible to maintain load balancing in
the MoVES I implementation. As an example, it is
worth noting that Italian towns usually have con-
centric streets, variable street sizes and intersection
density, due to the Middle Ages origins (see
Fig. 6); hence hot-spot distribution of vehicles
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may easily appear in quite an unpredictable way,
caused by traffic jams.

4.5.1. The ARTIS communication overhead reduction

(COR) heuristic

The Communication Overhead Reduction
(COR) heuristic is based on a data structure associ-
ated with each model entity by the ARTIS middle-
ware. A sliding window approach, whose size is a
simulation parameter, is used to limit the time-hori-
zon of the heuristic. To limit the overhead, the heu-
ristic function is called only after a communication
is performed, involving the model entity. After a
time-step including at least a communication event,
the heuristic evaluates the external LP which was
destination of the majority of external model entity
interactions, during the recent sliding window
observation period. If the rate of the external (for-
eign-LP) with respect to internal (home-LP) interac-
tions is greater than a threshold parameter (which
can be tuned at runtime), then a migration of the
model entity is performed towards the external-
LP. This COR heuristic aims at maintaining a high
Local Communication Ratio (LCR) in the commu-
nications between LPs, resulting in lightweight com-
munication overheads.

4.5.2. The ARTIS load balancing (LB) heuristic
Combined with the COR heuristic, a Load Bal-

ancing (LB) heuristic is implemented by the ARTIS
middleware. The LB heuristic monitors fast and slow
LPs, respectively, when implementing a simulated
time-step synchronization. A distributed voting-like
procedure is performed to share the local ranking
of each LP. In this way, based on a threshold param-
eter, an LP can realize if it can accommodate more
load with respect to the average, or if it should de-
allocate some load. In both cases, the LP also identi-
fies the target LP to migrate model entities to.

5. Testbed models for vehicular and wireless scenarios

In the following we illustrate the main character-
istics of the vehicular and wireless communication
models implemented in MoVES II, as a perfor-
mance analysis testbed of the PADS architecture.

5.1. Vehicular model

The mobility- and area-entities in our model are
road segments, lanes, intersections, traffic lights
and the mobile vehicles. A Parser module can
import maps from the GPS TrackMaker program
[49] by creating and allocating data structures in
memory according to selected map partition strat-
egy. As proposed in STRAW [13], we identify the
components of the road model as: an intra-segment
component, an inter-segment component and a
route management model. The intra-segment model
controls vehicular movement into a road segment
according to a bottom-up, microscopic approach.
Several car-following models have been proposed
in the literature to model the cars’ behavior on a sin-
gle-lane or multi-lane street. For driver character-
ization, we implement the psycho-physical model
defined in [15], which is based on different parame-
ters (speed of the vehicle, speed of the vehicle ahead,
safe distance, driver’s mood). Lane-change policies
are currently not supported, but can be easily
included in the model. Intersection entities are
responsible for controlling the flow of vehicles
from/to connected segments. Inter-segment mobil-
ity is modeled by using a kind of admission con-
trol/reservation scheme: when the leading vehicle
in a lane reaches a threshold distance from the
stop-line, it requests permission to occupy the inter-
section. The intersection entity then replies based on
the current state of correlated entities (traffic lights,
directions of vehicles currently being in the intersec-
tion, etc.). If it is allowed to, the vehicle entity passes
the intersection, otherwise, it stops and waits for a
notification. The MoVES II Route Management
component manages the road segments that a vehi-
cle traverses during the simulation run. A Random
Walk model is considered in the performance anal-
ysis reported in this paper: vehicles randomly select
the next road at each intersection. Other synthetic
mobility models, like random waypoint patterns
and more realistic traffic-aware and shortest-path
strategies could be easily be integrated, and will be
considered in future work. The additional amount
of computation required to implement such strate-
gies has been synthetically shaped in the perfor-
mance analysis section, to measure the relative
impact of variable distributed computation load.

5.2. Wireless model

In this paper, a prototype definition of a VANET
model is used to study the analysis potential of
inter-vehicle communication among mobile nodes,
and the performance impact of the composition of
vehicular and wireless models on the PADS archi-
tecture. Only a subset of the modeling potential of
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MoVES II is exploited in this work, and the comple-
tion of model libraries is an ongoing activity. In this
paper, the IEEE 802.11 standard [50] is considered
as the enabling wireless technology for VANETs.
A mobile wireless device defines a protocol-stack
including the application layer, the data link and
MAC layers. Two wireless signal propagation mod-
els are currently available: open-space and two-ray
ground [35]. Some works on intelligent transporta-
tion systems (ITS) analysis consider the real-time
dissemination of traffic information as the target
application for VANETs. As an example, the
SOTIS and the TrafficView projects [11,34] propose
scalable traffic information systems that work by
allowing a vehicle to periodically send and receive
traffic information from neighbor vehicles. This
information is shown on-board on display systems
for augmented safety and driver assistance.

In our MoVES model, at the application layer, we
consider two different approaches for data dissemi-
nation in vehicular systems [51]. In the first method,
a Data Diffusion Protocol (DDP) is modeled as a
constant flow of ping messages, as follows: each node
(i) maintains an environment representation (ER) of
the surroundings, (ii) updates the ER upon reception
of new data, and (iii) periodically broadcasts the ER
to the neighbor nodes. Another method for the dis-
semination of information is flooding: each node
receiving a message immediately forwards it in its
zone, using sequence-number lists and time-to-live
mechanisms to limit useless retransmissions and net-
work congestion. The MAC layer of each wireless
device implements the Carrier Sense Multiple Access
with Collision Avoidance (CSMA/CA) Medium
Access Control protocol of the IEEE 802.11 Distrib-
uted Coordination Function (DCF). A realistic sim-
ulation of inter-vehicle communication in urban
scenarios would require realistic and accurate wire-
less propagation models, including the effects of
obstacles like buildings, path-loss, multi-path, shad-
owing and diffractions effects. In the analysis shown
in this work, a simple two-ray ground propagation
model is used [35,9], since we are interested on the
MoVES migration management, and on PADS per-
formance effects, influenced by model factors like
the local causality of broadcast communication,
and the vehicle mobility and distribution.

6. Performance analysis

In this section, we present a preliminary illustra-
tion of MoVES performance. For space reasons, we
only include a small subset of the results obtained
from the simulation experiments, aiming to show
different aspects of this work: (i) a general compar-
ison of the MoVES I and the MoVES II implemen-
tations, from a performance viewpoint, (ii) the
impact of the parallel/distributed approach on the
micro-simulation of large-scale highly-populated
urban traffic scenarios, (iii) benefits and drawbacks
of adaptation mechanisms included in the PADS
middleware.

A real-world urban area (the Middle Ages down-
town of Bologna) is the target scenario (shown in
Fig. 6): 1450 road segments and 760 intersections
in a 5.75 km2 area. Vehicle density is varied, in a
range from 2000 to 16000 vehicles in the simulated
area, both under uniform and hot-spot distribu-
tions. This is made in order to evaluate the effective-
ness of sequential vs. parallel/distributed simulation
approaches under different model assumptions and
computation load.

We define both parallel and distributed simula-
tion architectures for the analysis. The parallel sim-
ulation is implemented over one multiprocessor
PEU with shared-memory CPUs. The distributed
simulation is implemented over PEUs connected
via a LAN. All the parallel simulation experiments
have been executed on a Quadral Intel Pentium IV
Xeon CPU 1.50 GHz, with Hyper-Threading sup-
port activated and 1 GB RAM (Quadral Parallel
Architecture). All the distributed simulation experi-
ments have been executed on a cluster of three
homogeneous Dual Intel Pentium IV Xeon,
2.8 GHz, 3 GB RAM, interconnected by a Fast-
Ethernet (100 Mb/s) LAN (3 · Dual Distributed
Architecture). In all our experiments, each CPU
executes one single LP. We performed multiple runs
of each experiment, and the confidence intervals
obtained with a 90% confidence level are lower than
5% the average value of the performance indexes
shown.

6.1. MoVES I vs. MoVES II implementations

In this section, we show a performance compari-
son of the MoVES I and MoVES II implementa-
tions. The PADS execution is parallel, with 4 LPs
implemented on the Quadral Parallel Architecture.
The Wall Clock Time (WCT) is used as the perfor-
mance index, because speedup is not a correct index
to compare different models/implementations. In
Fig. 7, we show the WCT needed to complete a test-
bed simulation run in a scenario with vehicles uni-
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formly distributed in the simulated area. The
MoVES I framework design is based on uniform
distribution assumption, hence MoVES I is working
under its most favorable conditions in this experi-
ment. Vehicles are mobile and wireless-enabled
(IEEE 802.11 technology). In addition, vehicles
are performing significant computation due to the
implementation of the Data Diffusion Protocol
(DDP) described in Section 5.2. In all the tests, to
support the detailed modeling of wireless protocols,
the time-step was fixed to 10�5 s of simulated time.
The complex migration management and state shar-
ing communication needed by the MoVES II imple-
mentation is expected to introduce overheads with
respect to the MOVES I implementation. Fig. 7
shows that a small overhead is introduced by
MoVES II, but the impact of the overhead is under
control for the considered scenario. Fig. 8 shows the
same performance index, obtained under a different
scenario: in the initialization phase, all vehicles are
uniformly distributed in the area, and the mobility
model of vehicles follows a non-uniform distribu-
tion. All vehicles start moving to a small region of
the simulated area (hot-spot distribution). In this
case, MoVES I cannot react to computation-load
unbalancing, because a majority of vehicles will be
eventually clustered in a small region of the simu-
lated area. This means that a subset of LPs will be
managing high computation loads. This effect has
a significant impact on the MoVES I simulation per-
formance, as shown in Fig. 8. The MoVES II imple-
mentation is faster than MoVES I, in terms of
simulation WCT. The same qualitative results, not
shown for space reasons, have been obtained under
distributed execution architectures.

Results shown in Figs. 7 and 8 demonstrate that
the MoVES II implementation is scalable and adapts
in an automatic fashion to realistic model dynamics,
with low-overheads and significant performance
gain, with respect to the MOVES I implementation.
For this reason, in the following we will concentrate
our analysis on the MoVES II implementation, only.

6.2. Analysis of mobile vehicular scenarios

In the following we have tested the scalability of
the MoVES II framework, in parallel and in distrib-
uted execution environments, when only the vehicu-
lar-mobility is simulated (that is, without
considering the computation and synchronization
effect introduced in the simulation by wireless prop-
agation, communications and the DDP applica-
tion). In all tests, the time-step was fixed to 1 s of
simulated time, while the number of LPs involved
in a simulation run is varied between 1 and 6 (in
the distributed scenario), and between 1 and 4 (in
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the parallel scenario). The scalability evaluation is
limited to 4 and 6 LPs, respectively, due to the
current availability of dedicated and homoge-
neous resources in our execution platform. This sca-
lability analysis will be possibly extended as a future
work. For a given simulation run, the speedup is
defined as the ratio of execution time of a mono-
lithic simulation, divided by the execution time of
parallel/distributed simulation [20]. This is consid-
ered the main index to evaluate the performance
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gain resulting from parallel/distributed computa-
tion. The speedup is affected by different factors,
including load balancing, memory utilization, syn-
chronization and message passing overheads
required for the coordination of LPs [20]. Fig. 9
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2000, 8000 and 16000 vehicles is not significant. This
demonstrates that the computation load in this
model is marginal, resulting in a low advantage of
the parallel execution.

Fig. 10 shows the speedup value of a distributed
execution (on the 3 · Dual Distributed Architec-
ture), as a function of the number of LPs. In this
distributed scenario, no speedup is obtained for
the considered simulated model, and the differences
obtained by varying the number of simulated vehi-
cles are marginal. No speedup is obtained in this
case because the modeled scenario has a high degree
of communication overheads (to maintain a shared
state and to maintain synchronization) associated
with a low degree of computation. The parallel
implementation in Fig. 9 has slightly better speedup
than the distributed implementation, because the
cost of communication (and synchronization) is
affected by the latency of a LAN, which is greater
than the latency of a shared memory communica-
tion. For this scenario, a similar performance is
obtained under a monolithic and a PADS simula-
tion. Beyond performance results, the scalability
resulting from resources aggregation in a PADS
simulation for the latter scenario would be useful
(i) to support a huge number of vehicles in a wide
simulation area, or (ii) to support computation
intensive protocol stacks and user applications on
the modeled entities.
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The potential speedup that can be obtained by
exploiting concurrent computation in a PADS has
been tested by increasing the computation load in
the previous model, as shown in Figs. 11 and 12.
Each vehicle now performs ‘‘high computation’’
by calculating an adaptive-path between its current
location and a target destination, which requires the
frequent execution of a modified version of the
Dijkstra algorithm on a weighted street graph. In
other words, this has been defined as a simulation
testbed aiming to stress the computation load in
the system. Fig. 11 shows the speedup of a parallel
execution of the ‘‘high computation’’ model: the
speedup obtained approximates the maximum par-
allelism achievable with up to four parallel LPs.
Fig. 12 shows the speedup index obtained for a dis-
tributed execution of the ‘‘high computation’’ model
in a range up to six distributed LPs: again, the
speedup obtained approximates the maximum par-
allelism achievable for the execution architecture
considered. In this case, the speedup is smaller than
the one obtained in the parallel execution due to the
overhead of communication in distributed (LAN)
environment, which is higher than shared memory
communication. In Figs. 11 and 12 the number of
simulated vehicles has a remarkable effect on the
speedup, due to the multiplication of the high per-
vehicle model computation introduced. In Figs. 9
and 10 the effect of the variable number of vehicles
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Table 1
Wireless model parameters

Simulation time step 10 ls (IEEE 802.11 SIFS)
MAC layer IEEE 802.11 DCF
PR factor (%wireless vehicles) 50%
Packet size 64 Byte
Packet rate 1 pkt/s
Propagation model

(Avg. Transmission range)
(Avg. Carrier Sense range)

Two-Ray Ground
100 m
300 m

Vehicle Density 1 vehicle · 3125 m2

Nominal Channel Bitrate 2 Mbps
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is negligible due to the low model computation
required.

The speedup obtained in Figs. 11 and 12 is based
on high computation assumption. In the following
we will show a testbed analysis of a model including
both vehicular-mobility and IEEE 802.11 wireless
communication, that is, a more natural model for
the MoVES II design. Since the implementation of
the detailed simulation of wireless protocols
requires a computation intensive activity, we expect
that this simulated scenario would obtain typical
speedup results in the range of the results obtained
with previous model assumptions.
6.3. Analysis under mobile vehicular and wireless

scenarios

In this section we test the scalability of the
MoVES framework in the simulation of VANETs,
that is, when both the mobility factor and the
wireless inter-vehicle communication are modeled.
Inter-vehicle communication is performed for the
implementation of the Data Diffusion Protocol
(DDP) described in Section 5.2. Other modeling
parameters of wireless communication appear in
Table 1. The time-step of the simulation is deter-
mined by the smallest time parameter of the IEEE
802.11 MAC protocol [50], that is, a SIFS Time
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(10 ls): this means a 105 reduction of the time-
step size with respect to pure mobility simulation
scenarios. Since it is reasonable that in future
vehicular ad hoc networks only a fraction of vehi-
cles will be equipped with a wireless interface, we
introduce a penetration rate factor (PR) represent-
ing the fraction of vehicles which have a wireless
device.

Fig. 13 shows the speedup value when the num-
ber of vehicles varies between 2000 and 16000, and
the wireless penetration rate is 50%. In order to have
a correct comparison in terms of scalability, the sce-
narios with 2000, 8000 and 16000 vehicles have been
defined such that the vehicle density in the simulated
area is constant, and vehicles are uniformly distrib-
uted. The execution architecture is a distributed
 16000

f vehicles

OR Heuristic ON/OFF

COR Heuristic ON
COR Heuristic OFF

communication overhead reduction (COR) ON/OFF.
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simulation with six LPs, executed on a 3 · Dual Dis-
tributed Architecture. In general, parallel architec-
tures have the best performance results for the
scenario considered. Since the distributed architec-
ture is the most critical and interesting for simula-
tion, under the communication overheads
viewpoint, we will focus on distributed implementa-
tion results. By looking at Fig. 13, we observe that
the speedup obtained by the distributed implemen-
tation when the MoVES II Communication Reduc-
tion heuristic is disabled (COR OFF) is 1.0 (that is,
equivalent to the monolithic approach) with 2000
vehicles, 2.59 with 8000 vehicles, and 3.05 with
16000 vehicles. This confirms that a computation
intensive activity, like the wireless protocol imple-
mentation in the vehicular scenario, could obtain
significant speedup results. Since the distributed sce-
nario is sensitive to the cost of communication (and
synchronization), which is influenced by high
latency of LANs, a communication overhead reduc-
tion heuristic (COR) like the one defined in Section
4.5.1 would give additional advantages. This is dem-
onstrated in Fig. 13, by looking at the speedup val-
ues obtained in the vehicular wireless scenario with
MoVES II and the COR heuristic activated (COR
ON): 1.67 with 2000 vehicles, 3.29 with 8000 vehi-
cles, and 3.45 with 16000 vehicles. The speedup gain
due to the COR heuristic can be obtained as the dif-
ference between the two values, resulting in 0.67,
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Fig. 14 shows the average LCR index (see Sec-
tion 4.3.3) for the six LPs realizing the distrib-
uted simulation of the vehicular wireless
scenario. This figure demonstrates the effective-
ness of the COR heuristic in the reduction of
the communication overhead, obtained with
dynamic, migration-based clustering of mobile
model entities. The COR-based migration scheme
is devoted to maintain an elevated Local Com-
munication Ratio (LCR) in the communication
between LPs, that is, lightweight communication
overheads. Fig. 14 shows the static LCR value
obtained between six LPs without the effect of
the COR heuristic. This is equivalent to the
probability that a local entity allocated on LP
X randomly selects a destination entity located
on the same LP. By assuming that the allocation
of model entities on six LPs follows a uniform
distribution, the expected value is LCR = 1/6.
Given the initial random allocation of model
entities, the migration-based overhead communi-
cation reduction implemented by the COR heuris-
tic is able to dynamically cluster many interacting
entities on the same LPs. As shown in Fig. 14,
the steady state percentage of LCR with COR
heuristic activated reaches values between 75%
and 80% after a short initial transient phase.
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7. Conclusions and future work

In this paper, we have illustrated the architecture
and design issues of a novel, scalable and efficient
framework for the parallel and distributed simula-
tion of vehicular ad hoc networks, named Mobile
Wireless Vehicular Environment Simulation
(MoVES). MoVES is implemented on top of the
ARTIS simulation middleware, by including solu-
tions for communication overhead reduction, and
for computation- and communication-load balanc-
ing based on model-entity migration heuristics for
parallel and distributed simulation. The proposed
solutions have shown effective performance
improvements in the simulation of realistic wireless
vehicular scenarios. We have defined and tested
vehicle mobility in a real urban area model, includ-
ing driver psycho-physical model, inter-vehicle wire-
less communication, signal propagation, IEEE
802.11 MAC (DCF) protocol, and traffic dissemina-
tion applications. The performance analysis has
demonstrated the scalability, efficiency and accuracy
of MoVES, and some guidelines about the possible
drawbacks and benefits of a parallel/distributed
simulation of communication solutions for mobile
wireless VANETs.

Future work includes the improvements of the
ARTIS middleware support, and MoVES frame-
work model libraries. In addition, we will investi-
gate solutions to increase the adaptation of the
simulation framework to the characteristics of the
model and the execution architecture. The new solu-
tions will be designed to increase the performance
and scalability of the PADS simulation framework
and the support for layered and module-based mod-
eling and simulation of dynamic and massive wire-
less vehicular, sensor and mesh networks.
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