11th IEEE Symposium on Distributed Simulation and Real-Time Applications

Detailed Simulation of Large-Scale Wireless Networks

Michele Bracuto, Gabriele D’ Angelo
Dipartimento di Scienze dell’Informazione, Universita di Bologna
Mura Anteo Zamboni, 7. 40127, Bologna, Italy

E-mail: {bracuto, gdangelo}@cs.unibo.it

Abstract

In this paper, we present WiFra, a new framework for the
detailed simulation of very large-scale wireless networks.
WiFra is based on the parallel and distributed simulation
approach and provides high scalability in terms of size of
simulated networks and number of execution units running
the simulation. In order to improve the performance of
distributed simulation, additional techniques are proposed.
Their aim is to reduce the communication overhead and to
maintain a good level of load-balancing. Simulation archi-
tectures composed of low-cost Commercial-Off-The-Shelf
(COTS) hardware are specifically supported by WiFra. The
framework dynamically reconfigures the simulation, taking
care of the performance of each part of the execution ar-
chitecture and dealing with unpredictable fluctuations of
the available computation power and communication load
on the single execution units. A fine-grained model of the
802.11 DCF protocol has been used for the performance
evaluation of the proposed framework. The results demon-
strate that the distributed approach is suitable for the de-
tailed simulation of very-large scale wireless networks.

1 Introduction

A simulation is a system that represents or emulates the
behavior of another system over time [17]. The simulation
technique is of primary importance in the design, imple-
mentation and performance evaluation of many real world
systems. In designing simulations, one of the key factors
is the level of detail of the simulated model. That is the
complexity of the representation of real world entities and
interactions, within the simulation. The importance of the
level of detail is twofold: first of all, the correctness of the
simulation results is deeply influenced by the amount of de-
tails involved in the representation of the simulated system
[22]. In a performance evaluation, an inadequate amount of
details in the model representation can lead to misleading
or wrong results [16]. On the other side, the level of detail

1550-6525/07 $25.00 © 2007 IEEE

DOI 10.1109/DS-RT.2007.28

268

affects the time required for the simulation runs [18]. Anin-
creased amount of details in the simulated model translates
to many factors: i) more computation is required to evolve
the simulation; ii) more memory is necessary to represent
the modeled system; iii) an increased amount of communi-
cation between the simulated entities. The practical effect is
a more complex simulation that requires more time to com-
plete each run.

Many of the systems of interest for research and com-
mercial purposes are large scale, composed of a very large
number of entities or parts, and characterized by dynamic
nature and evolution. It is expected that this trend will con-
tinue in the next years, and consequently will increase the
request for highly scalable simulation tools. Wireless net-
works are often composed of a very large number of nodes
and, under the simulation viewpoint, with strict require-
ments in terms of level of detail [18]. Given the growth
rate of wireless technologies, networks composed of hun-
dreds of thousands up to millions of nodes will be widely
diffused in the next years. Therefore, we need tools suitable
for the detailed simulation of very large scale wireless net-
works. Many tools used for the simulation of wireless net-
works have a monolithic design and implementation, that is
a single execution unit manages the evolution of the whole
simulation [9, 10]. Mainly due to memory constraints and
the excessive amount of time required to complete the sim-
ulation runs, the approach based on a single execution unit
is unable to fulfill the scalability requirements imposed by
the simulation of large-scale wireless networks [13]. A lot
of memory is required to model a large number of wireless
devices, moreover the evolution of this kind of system is
characterized by many interactions that have to be gener-
ated, delivered and computed. An alternative approach is
based on Parallel And Distributed Simulation (PADS) [17],
in this case a set of execution units is in charge of the evo-
lution of the simulation. Each execution unit is responsible
of a part of the simulation (a subset of the entities that com-
pose the simulated system) and their interactions. To obtain
a correct evolution of the distributed simulation, all execu-
tion units have to be synchronized during the entire span

IEEE
computer
psouety

of the simulation. The main advantage of PADS approach
is the aggregation of memory and computational resources:
an execution architecture composed of many Physical Ex-
ecution Units (PEU) is able to model very large systems.
Furthermore, thanks to the parallel execution of some parts
of the model, a speed-up of the simulation can be obtained.
The main drawbacks of this approach are: i) the amount
of synchronization and communication required for a cor-
rect simulation execution and ii) the load-balancing in the
PADS architecture. It is obvious that also PADS are deeply
affected by the level of detail of simulated models. The
availability of many PEUs can reduce the bottleneck due to
the computation requirements, but communication in a dis-
tributed system is order of magnitude slower with respect to
a single execution unit. As said before, in order to obtain
correct results the PEUs involved in a distributed simula-
tion have to be synchronized. Increasing the level of detail,
means a higher amount of costly communications: to main-
tain the distributed system synchronized and to deliver the
interactions between the simulated entities. In some cases,
the communication cost is so high to outweigh the gain ob-
tained by the parallel execution given by multiple PEUs.
In this case, the distributed simulation is slower than the
monolithic one.

Medium Access Control (MAC) protocols commonly
used in wireless networks, require very fine-grained models
to represent the state of the shared medium and the behavior
of wireless devices [15]. Under the distributed simulation
viewpoint, this translates to very frequent synchronizations
and a large amount of communication between PEUs. This
problem is so critical that many simulation tools are still
based on the monolithic approach and therefore unable to
simulate very large wireless networks without relying on
approximation or aggregation techniques [22]. The main
goal of this work is to demonstrate that large scale wireless
network (200.000 nodes) can be efficiently simulated fol-
lowing the PADS approach, specifically tailored techniques
can improve the communication efficiency and therefore
increase the simulation speed. Finally, using appropriate
load-balancing schemes it is possible to exploit massively
distributed execution architectures composed of Commer-
cial off-the-shelf (COTS) hardware for the simulation of
very large-scale wireless networks (1.000.000 nodes). Net-
worked personal computers can be used to build low cost
execution architectures that are much more cost-effective
than dedicated High Performance Computing (HPC) archi-
tectures. The proposed approach permits to share comput-
ing facilities with other users (e.g. desktop PCs, university
computing labs, etc.) without reserving resources for a sin-
gle task.

The paper structure is the following: in Section 2 some
background concepts and related works about detailed sim-
ulation of wireless networks are introduced, in Section 3 we

269

describe the simulator that has been developed, in Section
3.2 are introduced some mechanisms to reduce communi-
cation overhead and to improve load-balancing in PADS. In
Section 4 is defined the testbed for our performance eval-
uation, the experimental evaluation is reported and the ob-
tained results are discussed. Finally, Section 5 reports our
conclusions and future work.

2 Background and related work

A distributed simulation can be designed as a set of Sim-
ulated Model Entities (SME), each SME models a small
part of the real system (e.g. a mobile wireless device). In-
teractions between entities in the real system are modeled
as interactions between SMEs. A Logical Process (LP) can
be seen as a component of the distributed simulation and the
container of one or more SMEs. Each LP is allocated on a
Physical Execution Units (PEU) that provides the compu-
tational and communication resources. Depending on the
hardware performance and the simulator design, the same
PEU can allocate one or more LPs. Following this approach
the simulator is built as a distributed system: each LP man-
ages the evolution of a part of the simulation. To obtain cor-
rect simulation results, all LPs have to be coordinated: the
evolution of the simulated model is given by the execution
of a synchronization mechanism.

To the best of our knowledge, existing simulation pack-
ages have severe limitations on the size and complexity
of the wireless networks that can be modeled [21, 24].
The most used simulator for wireless networks, at least in
academia, is the Network Simulator 2 (ns-2) [9]. This tools
is based on the monolithic approach and therefore is un-
able to manage very complex models [22]. An enhanced
version of ns-2, the Parallel Distributed Network Simulator
(PDNS) [6], has been developed to achieve better scalability
and performance improvements. PDNS is limited to wired
networks, and the traffic simulated at different spatial parti-
tions cannot affect each other [25]. Currently is under devel-
opment the next major revision of the Network Simulator,
called ns-3 [4], one of the most interesting planned features
is the support for distributed simulation. In the following,
it will be described some tools that are widely used for the
simulation of large scale wireless systems. GloMoSim [26]
is a simulation environment for wireless and wired network
systems based on the Parsec parallel discrete-event simu-
lation kernel [12]. QualNet [7] is a complete and efficient
commercial tool derived from GloMoSim. Under the scal-
ability viewpoint, QualNet is reported to scale up to 10’s of
thousands of nodes [7]. OPNET is an efficient and com-
plete commercial framework for modeling and simulation
of wired and wireless communication systems [5]. SWANS
is Java-based scalable wireless network simulator built on
the top of JiST engine [3]. SWAN [8] is a collection of

models for the simulation of wireless networks that runs on
top of the DaSSF [1] kernel. GTNetS is a network simula-
tion environment intended specifically for modeling large-
scale topologies [23]. To the best of our knowledge, neither
of these tools supports dynamic and adaptive techniques for
the reduction of the communication overhead and the dy-
namic reconfiguration in presence of variable background
computational and communication load.

3 Wireless network simulator

In Figure 1 is illustrated the stack-based architecture of
the wireless network simulator used in the following per-
formance evaluation (Section 4): on top WiFra models
the wireless network (Section 3.3). The middle layer is
represented by the GAIA+ framework that provides func-
tionalities to reduce the communication overhead and to
adaptively manage load-balancing in distributed simulation
(Section 3.2). The core of the simulator is the Advanced
RTT System (ARTIS) middleware (Section 3.1), the main
goal of the runtime is to provide an efficient and easy to use
environment for parallel and distributed simulation.

| WiFra I

| GAIA+ |

| ARTIS |

Figure 1. Logical architecture of the dis-
tributed simulator.

3.1 The Advanced RTI System (ARTIS)

The Advanced RTI System (ARTTS) is a middleware
for parallel and distributed simulation [11], specifically de-
signed to support high degree of model scalability and exe-
cution architectures composed of a large number of PEUs.
The design of the middleware has been partially influenced
by the High Level Architecture (IEEE 1516) standard [2].
Some new features have been introduced to improve scal-
ability and simulator performance, and a simplified set of
Application Programming Interfaces (APIs) has been pro-
vided to facilitate the development of PADS. In a distributed
simulation, a large part of the interactions are delivered by
network communications, therefore the execution speed is
highly influenced by the communication performance (e.g.
network latency and bandwidth). Consequently, it is of pri-
mary importance to consider the characteristics of the phys-
ical allocation of LPs and to adaptively adjust the communi-

270

cation behavior with respect to network performance. In ex-
ample, LPs on symmetric multiprocessing (SMP) or multi-
core systems should communicate via shared memory. On
the other side, LPs connected by LAN, WAN or Internet
should rely on the most appropriate communication proto-
cols (e.g. Reliable-UDP, SCTP, TCP, etc.).

Time management is a basic functionality of PADS, of-
fered by the simulation middleware. For the sake of gen-
erality, ARTIS supports both conservative (Chandy-Misra-
Bryant) [20] and optimistic (Time Warp) [19] synchroniza-
tion algorithms. In the detailed simulation of wireless pro-
tocols, the natural choice for simulator designers is the con-
servative time-stepped evolution of the simulated time (Sec-
tion 3.2.2). Most wireless protocols are based on time slots,
for this reason a time-stepped approach facilitates the de-
sign and implementation of the simulated model.

3.2 Communication overhead reduction
and load-balancing (GAIA+)

Some good ways to speed up distributed simulation
would be: i) to have a large number of PEUs, ii) to re-
duce the synchronization and communication overhead to
the bare minimum and iii) to have load-balancing over
PEUs. Given the dynamic and unpredictable nature of the
distributed simulation environment (e.g. variable network
load and latency, presence of background CPU load, etc.)
it is not possible to use off-line analytic evaluation to find
the best configuration with respect to the requirements de-
scribed above.

The reduction of the communication overhead and the
load-balancing can be seen as different aspects of the same
problem and therefore should be addressed concurrently.
Under the communication viewpoint, the maximum re-
duction of the synchronization and communication over-
head would be obtained clustering all SMEs in the same
PEU. Obviously, this solution is the worst case for load-
balancing. In the following of this section we will describe
the two main heuristics implemented in the GAIA+ frame-
work, it is worth noting that they do not work in isolation
but as part of an integrated mechanism.

3.2.1 Communication overhead

A simulation can be designed as a set of interacting SMEs,
the goal of the GAIA+ framework [14] is to enhance the
simulation execution by reallocating the SMEs over the
available LPs (and therefore PEUs). In this case, the
role of the dynamic reallocation is to reduce the com-
munication overhead, and consequently reduce the Wall-
Clock Time (WCT) needed to complete the simulation runs.
The Generic Adaptive Interaction Architecture (GAIA+)
[13, 14] is a migration based framework that exploits the

ARTIS middleware features. Under the communication
front, the main task of GAIA+ is to audit the communi-
cation pattern of each SME during the simulation execu-
tion. A set of specific heuristics is used to evaluate the com-
munication pattern and to trigger reallocations of SMEs.
GAIA+ migrates the highly interacting SMEs to the same
LP: clustering together the communication-related SMEs is
possible to reduce the costly inter-LP communications and
conversely increase the rate of low cost intra-LP commu-
nications. In GAIA+, the migration is implemented as the
transfer of data structures (i.e. the internal state of simu-
lated entities), the cost of migrating the simulated entities is
not negligible and is part of the heuristic. In many practical
cases this approach has led to a reduction of the communi-
cation costs and a speed-up, both in parallel and distributed
simulation [13].

3.2.2 Load-balancing

The migration feature and the presence of many synchro-
nization barriers (each time-step is in fact a synchronization
barrier) can be used to introduce a load-balancing mech-
anism. The proposed mechanism requires very few as-
sumptions from the execution architecture and can correct
imbalances that are unrelated to the evolution of the sim-
ulation (e.g. unpredictable fluctuations of the available
computation power and network load). The design of the
GAIA+ load-balancing mechanism is based on a distributed
scheme: each LP in the simulation collects the useful infor-
mation from other LPs, creates a local representation of the
distributed system and reacts in presence of imbalances. In
detail, a time-stepped simulation can be seen as a series of
consecutive synchronization points. Each LP is allowed to
move from time-step n to n + 1 if and only if all LPs have
completed the computation and communication tasks re-
lated to time-step n. A major drawback of this synchroniza-
tion scheme is that the execution speed of the distributed
simulation is limited by the speed of the slowest component
(that is the “slowest LP problem”). It is worth noting that
LP slowness can be due to two main factors: i) the PEU
(that allocates the LP) is overloaded; ii) the communication
network (used by the LP) has a higher delay with respect to
other components of the distributed system. The underlying
reasons are very different, but are indistinguishable from
outside the LP: the LP is detected as slow. In both cases
the reaction should be exactly the same: slow LPs have to
migrate some of their locally allocated SMEs to faster LPs.
In case i) this action would reduce the computational load;
in case ii) the higher delay introduced by the network is
balanced by a reduction in local computation. The result-
ing effect is that the LP will be able to complete the next
time-steps in less time, likely reaching the synchronization
points with good timing. In extreme cases, very slow LPs

271

(and the related PEUs) will be automatically excluded from
the simulator. In this way, GAIA+ will be able to reduce the
synchronization overhead due to useless LPs. As said be-
fore, the mechanism is totally decentralized, and based on a
distributed algorithm that tags the LPs as “slow” and “fast”.
In accordance with the SMEs migrations triggered by the
heuristics that reduces the communication overhead (Sec-
tion 3.2.1), the load-balancing heuristic triggers additional
migrations to load-balance the distributed system. An ade-
quate number of SMEs will be migrated from slow LPs to
the group composed of fast LPs. The number of migrations
is dynamically defined with respect to the size of the im-
balance. The detailed identification of SMEs that are candi-
dates for migrating is quite complex and based on many fac-
tors: communication patterns, computational requirements
and internal state size.

The proposed mechanism has some interesting charac-
teristics: a) the load-balancing is dynamic and adaptive; b)
both computation and communication aspects are consid-
ered; ¢) the mechanism can be tuned: it can be triggered ev-
ery time-step or delayed, to reduce the related overhead; d)
the execution architecture, that is the set of PEUs involved
in the distributed simulation, can be very heterogeneous in
terms of computational and communication resources. In
this case, the load-balancing mechanism will automatically
find the adequate level of load for each PEU, depending on
its performance; e) the background computation and com-
munication load (e.g. tasks that are unrelated to the sim-
ulation execution) can affect the execution architecture but
GAIA+ will trigger re-allocations, to improve the balanc-
ing; f) the “slowest LP problem” described above is at least
partially solved: the execution speed of the distributed sim-
ulator is still limited by the slowest LP but the system is now
able to correct imbalances due to the evolution of the sim-
ulation or caused by external causes. The adequate number
of SME to be allocated in each PEU is dynamically deter-
mined, depending on runtime conditions and performance
of the PEU hardware. A PEU that is overloaded due to tasks
that are unrelated to the simulation can be excluded from the
simulation, in this way the simulator will not starve waiting
for synchronizations. A detailed analysis of the proposed
mechanism is out of the scope of this work and has been
partially reported in [14].

3.3 Wireless framework (WiFra)

The Wireless Framework (WiFra) is a new library com-
posed of models and auxiliary functions, specifically de-
signed and implemented to simplify the simulation-based
performance evaluation of large scale wireless networks.
WiFra contains a new detailed model (fine-grained) of the
MAC 802.11 DCF protocol that has been used for the per-
formance evaluation described in Section 4. The model

has been implemented in C language for performance rea-
sons and has been designed to comply with the GAIA+
migration-based programming paradigm and the PADS re-
quirements. Details about the testbed configuration and the
experimental evaluation will be described in Section 4.1.
It is worth noting that, in this case, we are not interested
in the evaluation of the specific MAC protocol or other as-
pects strictly related to the wireless model. The scope of
this work is to evaluate performance and scalability of the
distributed simulator. In Section 1 we have seen that the
level of detail of the simulated model deeply affects the
simulator execution speed. We have chosen to implement
a fine-grained MAC 802.11 DCF model because it provides
a realistic testbed for the simulation of large-scale wireless
networks. Some parameters imposed by the protocol are an
interesting challenge for distributed simulation. In example,
the simulation time-step is imposed by the smallest time pa-
rameter defined in the 802.11 DCF protocol that is the Short
Interframe Space (SIFS) (10 us) [15]. Under the distributed
simulation viewpoint this translates to extremely frequent
synchronizations and therefore a very high communication
overhead.

4 Experimental evaluation

In the following, the WiFra simulator will be evaluated
in presence of different configurations and execution archi-
tectures. First of all, in Section 4.1 will be described the
testbed used in the performance evaluation. In Section 4.2
will be shown the scalability results obtained by the simula-
tor while disabling the GAIA+ framework, in this case the
WiFra model directly interacts with the ARTIS middleware.
In Section 4.3 the GAIA+ framework will be turned ON and
will be evaluated the impact of the communication overhead
reduction and load-balancing mechanisms on the simulator.
Finally, in Section 4.4 will be demonstrated that following
the proposed approach it is possible to build detailed simu-
lations of very large scale wireless networks, using a large
number of PEUs.

4.1 Testbed environment

This section will illustrate the main concepts of the
testbed model used in the following performance evalua-
tion. We assumed a scenario populated by a high number of
mobile wireless devices, referred as Simulated Mobile Host
(SMH). In the simulator, each SMH has been implemented
as a single SME, therefore under the simulation viewpoint
each communication between SMHs will be translated to
a set of interactions between SMEs. Each SMHs follows
a Random WayPoint mobility model (RWP), this mobility
model is far from being real, but it is a good choice to eval-
uate the GAIA+ mechanism: the uncorrelated mobility pat-

272

tern of SMHs is not favorable for the clustering mechanisms
described in Section 3.2.1. Furthermore, during the initial-
ization phase the SMHs are randomly allocated on the avail-
able LPs. Space is modeled as a torus-shaped 2-D flat topol-
ogy without obstacles, space size depends on the number
of SMHs, to have a constant density of SMHs in different
tests. On top of the 802.11 DCF protocol we implemented
a very simple info-mobility application, the modeled com-
munication between SMHs is a constant flow of fixed size
messages (i.e. constant bit rate), transmitted by every SMH
to all neighbors within a wireless communication range of
250 meters. Additional details can be found in Table 1. It
is worth noting that more complex propagation, mobility
and application models would have increased the amount
of computation required to complete the simulation runs,
without significantly increasing the synchronization over-
head. In this case the distributed approach would be highly
favored with respect to the monolithic.

Table 1: wireless model parameters
Simulation time-step 10 ps (802.11 SIFS)

MAC layer IEEE 802.11 DCF
Packet size 1024 bytes

Packet rate 4 pkt/s

Propagation model Free space propagation
Transmission range 250 meters

Variable size

fixed density of nodes

2 Mbps

Random WayPoint (RWP)
200.000, 1.000.000

Simulated area

Nominal channel bit rate
Mobility model
Simulated devices (SMHs)

4.2 WiFra scalability

First of all, it has been evaluated the scalability of the
simulator without any mechanism to improve the communi-
cation and computation load balancing (i.e. GAIA+ frame-
work OFF).

In Figure 2, is shown the scalability of the simulator in
a distributed execution environment composed of a variable
number of desktop PCs (from 1 up to 8) each one equipped
by Dual Core Intel Pentium IV CPU 3.0 GHz with 1 GB
of RAM and interconnected by Fast Ethernet network (100
Mbit/s). In reference to the previous definition, each PC is
a PEU and, in this case, allocates a single LP. The simula-
tion efficiency was measured in terms of speed-up, that is
the rate of execution times between monolithic execution
and distributed one. In this scenario, the simulated time
was set to 3 seconds and the simulated area was populated
by 200.000 SMHs. In Figure 2 is shown a good scalability
with LP = 2 (i.e. the simulation was executed on 2 dif-
ferent PEUs) with a speed-up value (1.77) that is near the

Scalability evaluation: WiFra

2,5

0,5

#PEUs

Figure 2. Speed-up obtained by the WiFra
framework. LPs =1, 2, 4, 8. Simulated sce-
nario with 200.000 SMHs.

theoretical maximum (that is 2). With 4 LPs we have a fur-
ther speed-up increase but the result is quite far from the
theoretical maximum (that in this case is 4). Finally, the
distributed simulation composed of 8 LPs is still faster than
monolithic (LP = 1) but shows a speed-up (1.97) lower
than LP = 4.

These results are in line with our expectations, for many
reasons. As described in previous sections, the performance
of a distributed simulator can be seen as a trade-off between
computation and communication costs. The distributed ar-
chitecture has a communication cost that should be bal-
anced by the gain of the parallel execution. If the com-
munication cost is lower than the gain we are in presence
of a speed-up of the distributed execution (LP = 2,4, 8)
with respect to monolithic (LP = 1). Conversely, if the
communication cost is higher than the gain we have a slow-
down. The model used in this performance evaluation is
highly populated but dominated by communications (i.e.
the synchronization requirements imposed by the 802.11
DCEF protocol), in this case each simulated device has very
little computational tasks. The total amount of computation
required to complete each step of the simulation is sufficient
to overload 2 PEUs but insufficient in the case of 4 and 8.
In this case, adding more PEUs to the execution architecture
increases the communication overhead without any compu-
tational gain. A real world scenario characterized by com-
plex user-level applications on top of the wireless protocol
would require a higher amount of computation and there-
fore would benefit of an increased number of PEUs.

A further reason for the speed-up result with LP = 8 is
due to the “slowest LP problem” described in Section 3.2.2.
The cluster of PEUs is homogeneous in terms of hardware

273

(e.g. CPU model and RAM) but with some differences
in terms of real performances. Without a load-balancing
mechanism (in this case GAIA+ is OFF) a small difference
in the background load of each PEU or in the network, leads
to a slow-down of the whole simulation. Furthermore, in-
creasing the number of PEUs consequently increases the
heterogeneity of the execution architecture.

In accordance with our aim to use COTS comput-
ing resources, the performance evaluation was conducted
overnight, using a cluster of desktop PCs with the same
hardware characteristics but with possible small differences
in the installed software and running tasks. The results of
many independent runs were collected and carefully scruti-
nized: we present the mean values.

4.3 The GAIA+ framework

Scalability evaluation: WiFra & GAIA+

3

1 2 4 8
#PEUs

H GAIA+ OFF B GAIA+ ON

Figure 3. Speed-up obtained by the WiFra
framework with GAIA+ OFF / ON. LPs =1, 2,
4, 8. Simulated scenario with 200.000 SMHs.

The same scenario described in Section 4.2 was sim-
ulated placing WiFra on top of the GAIA+ framework.
GAIA+ provides a set of features to automatically re-
duce the communication overhead and improve the load-
balancing (as described in Section 3.2). In Figure 3 is shown
that with L P = 1 (that is a monolithic simulation) GAIA+
is obviously unable to provide speed-up. However, it is
interesting that it does not introduce any significant over-
head. With LP = 2 and LP = 4, GAIA+ provides a
small increase in the speed-up (up to 5.7%). The small
gain in terms of performances shows that the communica-
tion in the simulated model is mainly due to synchroniza-
tions. As described in Section 3.2.1, GAIA+ migrates the
highly interacting SMHs to reduce the communication over-
head but is unable to reduce the synchronization overhead

due to the time-stepped synchronization mechanism. In the
simulated model, the amount of communication that is re-
lated to the model semantic is quite small: the communi-
cation ratio of each device is 4 pkt/s with respect to a syn-
chronization time-step of 10 us (see Table 1). Also in this
case, a realistic model with a higher amount of communica-
tion related to the model would increase the gain obtained
by the GAIA+ framework. With LP = 8, GAIA+ has a
performance gain of 16.2%, in this case the load-balancing
mechanism is able to deal with the heterogenity of the ex-
ecution architecture. Dynamically adjusting the number of
SMHs allocated in each LP, GAIA+ obtains a more uniform
system, in terms of execution speed.

4.4 Distributed simulation of very large-
scale wireless networks

The last part of this performance evaluation is about the
detailed simulation of a very large-scale wireless network,
composed of 1.000.000 of nodes. The execution architec-
ture was a cluster of 32 PEUs, Dual Core Intel Pentium
IV CPU 3 GHz with 1 GB RAM also in this case inter-
connected by Fast Ethernet. The distributed simulation was
composed by 32 LPs, one for each PEU. Initially each PEU
allocated 31.250 SMHs (that is 1.000.000 / 32). During
the simulation the load-balancing mechanism has triggered
re-allocations to adapt the load of each PEU to the perfor-
mance of the hardware and background load (e.g. other run-
ning simulations, batch tasks of the operating system, etc.).

WiFra & GAIA+

35K (Differencies from Initial Allocation)

33K

31250 EE EEHEHE EEE E EE EEIHEEHHEEI
» 31K llllllllllllll E lllllllllllllllll uJ
I
=
@ 29K |
o
8 o7k
£
3
Z 25K

23K

21K -

PEU (ID)

Figure 4. Distributed simulation of 1.000.000
of SMHs (32 PEUs). Allocated SMHs on each
PEUs, differences from initial allocation.

In Figure 4 is shown the final allocation of SMHs for
each PEU. It worth noting that the effective performance

of some PEUs is quite different from the expected perfor-
mances. PEUs 11, 21, 22 and 32 have a final allocation
of less than 25.000 SMHs, with a difference of more than
6.000 units with respect to the initial allocation. Another
group of PEUs (4, 15, 17 and 18) have a limited reduction
in the number of allocated SMHs. The remaining PEUs
have increased the number of SMHs to compensate the re-
ductions in other PEUs. In this last group, the increase is
quite uniform across all PEUs.

Distributed simulation:
GAIA+ OFF vs. ON
12000 +

10000

8000

6000

4000

Wall-Clock-Time (s)

2000

0
0 10 20 30 40 50
Simulated Time (1 step = 200 time-steps of simulated time)

EGAIA+ ON LIGAIA+ OFF

Figure 5. Wall-Clock-Time for the simulation
of 1.000.000 of SMHs (over 32 PEUs). Each
step in the X-axis equals to 200 time-steps of
simulated time.

Under the performance viewpoint, the detailed simula-
tion of wireless networks composed by million of nodes
is not feasible following the monolithic approach. A sin-
gle execution units is unable to represent so large models
without severe performance degradation. In Figure 5, we
have compared the WCT for the simulation of the scenario
described above, with and without the GAIA+ framework
(that is GAIA+ ON and OFF). For readability, each step in
the graph is obtained by the aggregation of 200 time-steps
of simulated time. The results confirm that GAIA+ provides
a limited but valuable gain in the time required to complete
the simulation. After the warm-up phase, the mechanism is
able to speed-up the execution and to provide a gain in terms
of performance (up to 21%). The gain is limited but quite
stable for the rest of the simulation. For the reasons de-
scribed in Sections 4.2 and 4.3, this result is very promising.
The simulation of more complex and realistic user level-
applications would further increase the gain obtained by the
GAIA+ framework. Furthermore, execution architectures
composed of very heterogeneous PEUs would sharply in-
crease the gain obtained by the GAIA+ framework with re-
spect to a static allocation of SMEs. The warm-up phase

is necessary for the GAIA+ heuristics to collect informa-
tion about the simulated model and to tune the parameters
of the migration-based mechanism. The presence of a very
large number of simulated entities is a key issue in the de-
sign and implementation of the heuristics. In the considered
scenario, the amount of simulated entities is so high that, a
badly designed heuristc would be very expensive in terms
of computation time and memory requirements.

5 Conclusions and future work

The detailed simulation of large-scale wireless networks
is a complex task that involves many aspects and has spe-
cific requirements. In this work we have presented WiFra,
a new tool for the simulation-based performance evaluation
of wireless networks based on the MAC 802.11 DCF pro-
tocol. It has been demonstrated that distributed simulation
is a feasible approach for the simulation of large-scale net-
works. Furthermore, an approach based on the migration
of the simulated entities can reduce the communication re-
quirements of distributed simulations and concurrently im-
prove the load-balancing in the execution architecture.

Future works include: new models of wireless protocols,
the implementation of more realistic user-level applications
and protocols to test the performance of the GAIA+ frame-
work in presence of more favorable scenarios, and a care-
ful tuning of the proposed migration-based heuristics to ex-
ploit the characteristics of wireless networks. An important
planned feature of GAIA+ is the dynamic adaptation of the
number of execution units (PEUs) in the distributed simula-
tion architecture. The framework should be able to detect if
the execution architecture is overloaded, and therefore acti-
vate more PEUs. Conversely, if the execution architecture
is underloaded then it should shrink the number of PEUs, to
reduce communication and synchronization costs.

References

Dartmouth SSF
http://www.cs.dartmouth.edu/research/DaSSF/.
IEEE Std 1516-2000: IEEE standard for modeling and sim-
ulation (M&S) high level architecture (HLA).

JiST / SWANS. http://jist.ece.cornell.edu/.

nsnam: ns3-project. http://www.nsnam.org/.

(1] (DaSSF).
(2]

(3]
(4]

[5] OPNET Modeler and Wireless Module.
http://www.opnet.com/products/modeler/.
[6] Parallel / Distributed ns.

http://www.cc.gatech.edu/computing/compass/pdns/.
SNT: QualNet. http://www.qualnet.com.

SWAN: Simulator for Wireless Ad Hoc Networks.
http://www.eg.bucknell.edu/swan/.
UCB/LNBL/VINT: the ns-2
http://www.isi.edu/nsman/ns/.
OMNeT++: discrete event
http://www.omnetpp.org, 2004.

[7]
[8]
network simulator.

(9]

[10] simulation environment.

275

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

(20]

[21]

(22]

(23]

[24]

[25]

[26]

ARTIS: Advanced RTI
http://pads.cs.unibo.it, 2007.
R. Bagrodia and R. Meyer. PARSEC: A parallel simula-
tion environment for complex systems. I[EEE Computer,
31(10):77-85, 1998.

L. Bononi, M. Bracuto, G. D’Angelo, and L. Donatiello.
Performance analysis of a parallel and distributed simulation
framework for large scale wireless systems. In MSWiM ’04:
Proc. of the 7th ACM Int. Symposium on Modeling, Anal-
ysis and Simulation of Wireless and Mobile Systems, pages
52-61. ACM Press, 2004.

L. Bononi, M. Bracuto, G. D’ Angelo, and L. Donatiello. An
adaptive load balancing middleware for distributed simula-
tion. In Frontiers of High Performance Computing and Net-
working - ISPA 2006 Workshops. Springer, 2006.

L. Bononi, M. Di Felice, M. Bertini, and E. Croci. Paral-
lel and distributed simulation of wireless vehicular ad hoc
networks. In MSWiM ’06: Proc. of the 9th ACM Int. Sympo-
sium on Modeling Analysis and Simulation of Wireless and
Mobile Systems, pages 28-35, New York, NY, USA, 2006.
ACM Press.

D. Cavin, Y. Sasson, and A. Schiper. On the accuracy of
manet simulators. In POMC ’02: Proc. of the Second ACM
Int. Workshop on Principles of Mobile Computing, pages
38—43, New York, NY, USA, 2002. ACM Press.

R. Fujimoto. Parallel and Distributed Simulation Systems.
Wiley & Sons, 2000.

J. Heidemann, N. Bulusu, J. Elson, C. Intanagonwiwat,
K. Lan, Y. Xu, W. Ye, D. Estrin, and R. Govindan. Effects
of detail in wireless network simulation. In Proc. of SCS
Multiconference on Distributed Simulation, 2001.

D. Jefferson. Virtual time. ACM Trans. Program. Lang.
Syst., 7(3):404-425, 1985.

J. Misra. Distributed discrete event simulation. ACM Com-
puting Surveys, 18(1):39-65, 1986.

V. Naoumov and T. Gross. Simulation of large ad hoc net-
works. In MSWIM ’03: Proc. of the 6th ACM Int. Work-
shop on Modeling Analysis and Simulation of Wireless and
Mobile Systems, pages 50-57, New York, NY, USA, 2003.
ACM Press.

L. Perrone, Y. Yuan, and D. Nicol. Simulation of large
scale networks ii: modeling and simulation best practices
for wireless ad hoc networks. In WSC ’03: Proc. of the 35th
Conf. on Winter simulation, pages 685-693. Winter Simula-
tion Conference, 2003.

G. Riley. Large-scale network simulations with gtnets. In
WSC °03: Proc. of the 2003 Winter Simulation Conference,
2003.

G. Riley and M. Ammar. Simulating large networks: How
big is big enough? In Proc. of First Int. Conf. on Grand
Challenges for Modeling and Simulation, Jan 2002.

D. Turgut, G. Wang, L. Boloni, and D. Marinescu. Speedup-
precision tradeoffs in time-parallel simulation of wireless ad
hoc networks. In DS-RT ’06: Proc. of the 10th IEEE In-
ternational Symposium on Distributed Simulation and Real-
Time Applications, pages 265-268, Washington, DC, USA,
2006. IEEE Computer Society.

X. Zeng, R. Bagrodia, and M. Gerla. GloMoSim: A library
for parallel simulation of large-scale wireless networks. In
proc. PADS 98, 1998.

System Homepage.

