

MOBILE VIRTUAL WORLDS: A PROXIMITY BASED EVOLUTION

Stefano Cacciaguerra, Gabriele D’Angelo

Department of Computer Science

University of Bologna

Via Sacchi 3, Cesena (FC), Italy

E-mail: {scacciag, gdangelo}@cs.unibo.it

KEYWORDS

Virtual Worlds, Pervasive Entertainment, Agent-based

Entertainment, Game Design.

ABSTRACT

The wireless revolution has enabled a new generation of

applications for nomadic users. In this work we propose a

new paradigm for the creation of games based on virtual

worlds that are hosted on mobile devices. Each time mobile

devices “get in touch”, their virtual worlds have the

opportunity to interact. This form of interaction is based on

the remote control of a subset of the agents that populates

the virtual world. In accord with this, it is possible to create

games with an unpredicted and unforeseeable evolution.

Finally, we introduce PReDA, a prototypal implementation

of the proposed mechanism that is based on the Netlogo

environment.

INTRODUCTION

The pervasive diffusion of the wireless technology has

lead to wide effects on the ICT field. First of all the wireless

access to the Internet telephony and, then, the use of wireless

mobile devices to browse the Web, anytime and anywhere.

Thanks to more capable hardware, pervasive networks and

adaptive software protocols, the wireless technology is

fostering a new generation of applications, as an example:

sensors’ networks, wearable computers, ubiquitous and

context aware applications (Chen at al., 2003; Kanter, 2003).

In this scenario, it is easy to predict a future where

mobile users will daily use many forms of Internet access

(e.g. wireless hotspots, private networks, ad hoc networks

etc.), in order to share contents and to take advantage of the

resources offered by the broadband connectivity. As an

example, the participative virtual worlds are gaining more

and more popularity: they allow the users to keep in touch

with friends and colleagues, to collaborate in the resolution

of shared tasks, to run brainstorming meetings and to share

common resources. It is worth noting that this kind of social

environments supports both forms of collaboration and

competition between users, building a new kind of

interactive and immersive metaworld. To some extent, using

these technologies is possible to build virtual worlds that

mimic many of the daily activities (Linden, 2007). In this

case, the world is virtual and under some viewpoints it is

safe: it represents a sort of sandbox.

In this field, an important role has been played by the

participative simulation (Colella et al., 1998; Wilensky et al.,

2007) that is a gaming activity often used to explore

complex systems. As an example (Terna, 2003), a virtual

marketplace where users can be sellers and customers, at the

same time. As another example, the road transportation: we

could imagine a system where each user is in charge of

managing a specific traffic light, with the capability to

trigger the “green” and “red” lights. In this case the users

would be able to choose a strategy based on collaboration or

competition. For the sake of simplicity and clearness, all

these examples are immediate and obvious, but it is worth

noting that participative simulation has many fields of

application in both scientific and technical areas (e.g.

diffusion of viruses, vehicles behavior, modeling of

molecules in a membrane and the prisoners’ dilemma).

The main part of a participative simulation is the

underlying Multi-Agent System (MAS). It offers a

programmable system to model and simulate complex

behaviors. In a MAS, the simulation developer can define

groups of agents, to each group can be assigned autonomous

or shared tasks, and can be instructed to achieve a specific

goal. The global state of a multi-agent simulation is obtained

as the result of a large set of interactions among the agents.

During the simulation lifespan each agent will be part of

many local interactions, data exchanges, cooperation and

competition activities. Each agent (during its artificial life)

can be driven by a form of artificial intelligence or by a

human being. In both cases, the agents will play following

their capabilities, in example their past knowledge, the

ability to explore the environment and the available

activities.

In this scenario, the wireless technologies enable the

participation of nomadic users, extending the access to

MASs also to users with mobile devices. The first and more

direct consequence of the wireless technology is that human

users can remotely control agents that are within a MAS,

anytime and anywhere. Furthermore, less immediate and

more complex consequences can be foreseen. Despite of a

human being, the player could be a remote MAS that

controls one or more external agents. In this case the

interaction would be between MASs. Using wireless

connectivity, would it be possible to imagine that a MAS

running on a mobile device would connect to another MAS,

to take control of a part of its agents?

The main goal of this work is to demonstrate that this

scenario is realistic, and to propose a new framework based

on the Netlogo environment. Following this approach,

different MASs implemented by Netlogo will be able to

interact together, based on their proximity, and to affect the

evolution of the whole system. In this case, we are not

proposing a new game based on MASs, but a new paradigm

for the creation of games based on mobile virtual worlds.

gda
Text Box
Proceedings of the International Conference on Intelligent Games and Simulation (GAME-ON 2007).Bologna, Italy, November 20-22, 2007. ISBN 978-9-077-38137-3

Following this approach, the evolution of the game is

determined by new factors, as the proximity of gamers and

the consequent random interactions between MASs. In our

vision, this work is the first step in the direction of a new

class of mobile games.

The next Section explains why it is important to give the

possibility to remotely drive agents. The third Section shows

similarities and differences with computer entertainment

applications. The fourth illustrates the system architecture.

The fifth suggests a case study based on Netlogo. Finally,

we conclude this paper with some final remarks and future

works.

REMOTE DRIVEN AGENTS

A MAS allows to represent, mimic and study complex

systems where different components interact among them in

a cooperative or competitive way. It promotes the

understanding of a complex system by means of the

description of its rules and the representation of its

evolution. Modern MASs are based on 2D raster graphical

functionalities (North et al., 2006; SWARM, 2007;

Wilensky, 2007) that, in many cases, are inadequate for the

human perception. Only lately, the introduction of recent 3D

rendering engines (Cacciaguerra et al., 2004; Wilensky,

2007) has lead to higher expressivity and a better

representativeness of the system (see Fig. 1). Expressivity

becomes either the capacity to mimic, with a higher detail of

accuracy, a complex system (if this is necessary for the

modeling effort) or to show to the viewer (i.e. the player)

another dimension in order to enhance his comprehension.

Essentially, we are introducing a new dimension to our

discussion, referring either to another physical dimension

(i.e. geometric plane) or an improvement of the

representation (i.e. expressive power). In accordance with

these considerations, we believe that enabling a MAS to

control the agents of another one, would permit to add a new

dimension in the evolution of complex systems. The idea

behind this approach is not related on the opportunity to

decrease the computational load, distributing the agents on

other computers (that is a well known approach in literature,

e.g. Riley, 2003). It refers to the opportunity that two or

more MASs get in touch and interact when are close, that is,

under the wireless coverage area of one or more network

adapters. This translates to a system that can evolve in a

“less deterministic” (i.e. unpredictable) mode: that is because

the interaction due to the proximity with other systems

would be able to change their evolution. This kind of system

will be by far more unpredictable than a system where all

agents are driven by a single piece of local software (i.e. the

standard approach). In the first case, the movements of

mobile devices are the basis for unplanned meetings and the

availability of a wireless network is the media that allows the

interaction. In this scenario, the unplanned meetings add a

new degree of indeterminism to the whole system.

Furthermore, following this approach, the game modelers

can define different behaviors of agents when reacting to the

same perception, implementing different course of action. In

any case, all the implementations are bounded by a set of

game-related roles. For example, in the wolf-sheep predation

model, the sheeps should adopt different strategies to eat the

cabbage and to flee from the wolves. In any case, it is not

acceptable that a sheep eats a wolf! In other words, this

means that the freedom in the implementation of a specific

behavior have always to be coherent with the specific role of

the agent. Following this approach, it is possible to mix the

behaviors of agents that have been implemented by different

parties. This will allow to generate combined actions that

can lead to results that are unpredicted and unforeseeable in

the original system. In a causal meeting, the exchange of

behaviors among systems that are hosted on mobile devices,

can be described as the spread of a virus in an epidemiologic

scenario. In this metaphor, the remote system can affect the

behavior of many agents due to the contact (i.e. the

proximity). A posteriori, if the resulting effect is seen as

interesting then it would be possible to analyze the log files,

in order to trace the interactions and inspect step-by-step the

evolution of the system. In most cases, videogames can be

considered as complex systems. Therefore, very often the

participatory simulation is seen as a form of game-based e-

learning. In this sense, we think that our approach could be a

first step in the direction of a new paradigm for mobile

gaming.

Fig. 1 Display of NetLogo bouncing balls model: 2D and 3D

RELATED WORK

In the state of art of computer entertainment there are

some applications partially based on the proposed paradigm,

such as: Ubiquitous Monster (Kawanishi, 2005), Insectopia

(Peitz et al., 2007), WSNMP (Liu et al., 2006) and Pirates!

(Björk et al., 2001).

Ubiquitous Monster is a monster collection videogame

where the players wander about the real world to collect

monsters that will be used in the virtual world. In this case,

the transfer of monsters is based on the RFID technology.

Within the game, the behaviors and aptitudes of monsters

are predefined, and they appear in the virtual world in

relation with the geographical position of the player. The

monsters, accommodated in the virtual world running on a

mobile device, can: born, make friends, evolve, breed and

die on the basis of the weather conditions (i.e. lightness,

temperature, pressure, electric potential). All these

conditions are detected by a sensors network in the area

where the user is located. For example, given a monster that

uses the light to obtain its vital energy, it is simpler to

capture it in a sunny place instead of a dark zone. Further,

the weather and light conditions change along the day: so, it

is very difficult to find such kind of monster during the

night! In the game, when two players meet, some monsters

may migrate from one virtual world to another, in order to

find more comfortable environments, and therefore to obtain

as much energy as possible. This game promotes the

movement of the players in the real world in order to collect

different monsters and to exchange them, by means of the

migration process. Since that the virtual world is an

ecosystem with limited resources, it is not possible to

capture a great number of monsters. Therefore, the aim of

the game is to reach a sort of instable equilibrium in each

local ecosystem, trying to support the higher possible

number of monsters of different breeds.

Similarly, Insectopia is an insect collection video game

running on mobile phones. Each player must collect and

domesticate his insects. The lifespan is limited to a fixed

amount of time. After a week, each insect dies and the player

must capture a new one. The catch of a specific insect

depends on the type of mobile devices that are in proximity

of the player. This game adopts the Bluetooth technology in

order to discover the different types of mobile devices.

Wireless Sensor Network based Mobile Pet game

(WSNMP) is a game where the user must control domestic

animal by means of a mobile device. In this case, the game is

based on a wireless sensor network. The players can interact

with virtual pets, feeding them, taking care of them and

playing with them. And furthermore, they can share their

pets with others, trade them, watch them compete against

each other, become friends, create offspring and develop a

virtual pet society. The players can also communicate each

other through their shared pets. Each virtual pet is

represented by a sensor node. The sensor nodes are

composed by many sensors; each sensor is an organ of

perception, such as, light detector, smoke detector and

microphone for eye, nose, and ear, respectively.

Pirates! is a videogame where the player takes the role of

a captain pirate sailing his ship in a fantasy archipelago. The

ship permits to transport commodities from the different

islands in order to be sold at markets. Each ship has a crew

and is equipped with cannons. If the captain successfully

completes the missions, then he can sturdier the ship thanks

to the gained rewards. There are some dangers such as

sinking in a battle, meeting cannibals or getting lost during

the exploration of an island. The aim is to find treasures and

commodities in each visited island. Islands are different and

provide many kinds of merchandise and dangers. Further, at

the free harbor it is possible to recruit new crew members, to

repair a ship, to trade for goods and to obtain a new mission.

Each ship is represented by a PDA equipped by an IEEE

802.11 WLAN card and a RF proximity sensor, while the

islands are physical locations in the real world (e.g. different

rooms in a building).

The similarities of these applications with our proposal

are: i) the dynamism in the evolution of the ecosystems, and

ii) the migration of agents among mobile devices. The above

introduced applications use sensor networks to detect the

ambient conditions and to get the geographical position.

Differently in our approach, the possible evolutions of the

virtual world are, a priori, less predictable. In fact in the

other approach, the behavior of monsters, insects, pets or

pirates does not change during the lifespan of the game: all

of them are defined and implemented by the application

developer and can not be changed at runtime.

To the contrary, in our approach, each player can modify

the behavior of its agents (e.g. implementing new actions) in

each moment, also if the game has already started. The only

imposed limitation is to respect the general rules of the

virtual world that, above, we have called roles. In this way, it

will be impossible to define a priori the evolution of the

simulated ecosystem. A posteriori, it will be very important

to study the evolution of the system, inspecting the different

phases of the evolution and taking care to study emergent

patterns. This analysis will be possible using the log files

that trace the evolution of the whole system.

SYSTEM ARCHITECTURE

In our vision, we have a set of virtual worlds, each one

runs on a different mobile device. The virtual worlds should

be able to interact together depending on their proximity.

The position of a virtual world is due to the mobile devices

that hosts it. Each virtual world is composed by a set of

agents living in a defined environment. When a virtual world

gets in touch with another one, it can take control of a sub-

set of the agents in the other one.

In accord with this vision, we implemented the

Proximate Remotely Driven Agents (PReDA) framework.

PReDA is a prototypal communication framework, based on

the proximity of mobile devices, that is in charge of: i)

discovering devices that host a PReDA virtual world; ii)

managing the communication among PReDA virtual worlds

and iii) enabling the remote control of agents.

Given such requirements, the proposed architecture is

based on ultra-portable notebooks, tablet PCs and PDAs,

Java-enabled and with Bluetooth connectivity. The

discovery phase of PReDA takes advantage of the Bluetooth

discovery mechanism. Each device continuously searches

other devices within its coverage area. Each time a new

device is detected, an inquiry scan is performed to obtain the

list of available services (i.e. a virtual world based on the

PReDA framework). If the new device is running PReDA,

then it is possible to start a direct communication between

the local and the remote virtual worlds. The communication

is implemented using the Bluetooth Logical Link Control

and Adaptation Protocol (L2CAP). PReDA uses the L2CAP

protocol to pair the local and the remote virtual worlds. Each

instance of PReDA verifies if there are remotely controllable

agents that are flagged as available. An agent is available if

no other PReDA systems are now controlling it. If at least

one available agent is found then the local virtual world will

send a set of commands to a subset of them. Due to the

nomadic nature of the hosting devices, only a limited amount

of time (in order of a few seconds) would be available for

the interactions among virtual worlds. Therefore, in a short

time frame, it is possible to transfer a single command or a

complex behavior (in form of a set of actions). In the

following section we will introduce a prototypal

implementation of PReDA based on Netlogo.

A CASE STUDY WITH NETLOGO

NetLogo (Wilensky, 2007) is a programmable tool that

allows to simulate the evolution of complex systems. This

tool permits to the modeler to give instructions to a high

number of independent agents all operating concurrently,

either in a cooperative way or in a competitive one.

Therefore, it promotes the exploration of the connection

between the micro-level behavior of individuals and the

macro-level patterns that emerge from the interaction of

these individuals. Further, the users can “open simulations”

(i.e. explore the internal state), can play with them, in order

to explore their evolution under various conditions and can

create their own models (i.e. implementing new

functionalities). This tool is simple enough that any user can

easily run simulations or even implement the behavior of his

agents. The possibility to see the code of other models and to

access an elevated number of high-level primitives

promotes the reuse of the code, allowing everyone to

implement its own routines. The simple approach, that can

be used to program the tool, does not reduce the expressive

power of the models that can be simulated, making it an

interesting tool for many research fields (i.e. the simulation

of many natural and social phenomena). Moreover, the

Netlogo community is very active and has made a large

number of models freely available, models that are related to

many fields as: biology and medicine, physics and

chemistry, mathematics and computer science, economics

and social psychology. This wide adoption demonstrates that

Netlogo is very easy to use and that can cope with many

different topics and problems. One of the most interesting

features (introduced in version 2.0) is the “extensions”

module, it allows the developers to introduce new

commands and reporters (Wilensky, 2007) that can be used

inside the Netlogo environment. The idea behind this

module is to extend the primitives by means of Java code,

that is archived in a .jar file. In this way, it is possible to

write high-level functions but also to integrate the Netlogo

environment within other projects! In accord with this

consideration, we have integrated the Netlogo environment

within a new framework. The goal of this new framework is

to support communication among many Netlogo

environments that are executed on different devices. The

framework exploits the Netlogo extensions module to obtain

this result. The framework has to provide two main

functionalities: i) it must supply an access point to each local

instance of the environment by means of an agent discovery

system; ii) it must support the exchange of commands

among different mobile devices. The communication

between different environments needs a protocol that

permits to exchange commands (as string of characters) from

different worlds (e.g. Netlogo instances). Given the “A

world” and the “B world”, that are different environments

accommodated on two mobile devices, our mechanism

provides a form of addressing (i.e. to make the environments

reachable) and a communication protocol.

In detail, Netlogo classifies agents into two types:

passive and active. The virtual world is divided in square

pieces of ground, each piece is called “patch”. Netlogo

classifies the patches as passive agents. These agents can be

affected only by active ones and by the Observer (that is the

Demiurge of the world). The active agents (called turtles)

can interact among them and with the patches.

In the following, we report some details about the

implementation of our framework. Firstly, we report a piece

of code from a Netlogo model. It is worth noting that the

example contains an include of the PReDAextension.jar

archive. This archive provides the basic functionalities for

communication and discovery. In this way, the developer

can directly use its own Java routines inside Netlogo. Each

Netlogo model begins with the pressure of a button that

starts the setup of the ecosystem, initializing the agents and

the environment variables. In particular, in the code example

reported below, after the initial setup, the setup bootstraps

the discovery system specifying which agents can be

remotely controlled. In detail, the rmt-crt-turtles and rmt-crt-

patches routines report the set of turtles and patches that will

be remotely controllable. By means of the definition of these

routines, the user can determine which agents can be

remotely controllable while leaving untouched the others.

The startCommFrmwrk initializes the communication

framework. The GO button runs the body of a Netlogo

model. The ask construct is used to specify commands that

are to be run by a set of agents. The run routine allows an

agent to interpret the given string as a sequence of one or

more NetLogo commands and runs them. The routine

recvmsg that has been declared inside PReDAextension.jar

receives a message, that is a string sent by a remote Netlogo

environment accommodated on a mobile device. Obviously,

this means that the remote Netlogo environment will use the

sendmsg routing (also in this case defined in

PReDAextension.jar) to send messages, that are strings

dispatched to one or more remotely controlled agents.

In last part of the code, it is possible to analyze the

approach used in the implementation of our framework. In

the first case (see Example 1), the received string will

contain the number of steps that a set of turtles must cover.

In the second case (see Example 2) is defined the new color

of a set of patches. For example, if the string returned by

recvmsg is “3”, then all turtles will be moved straight of 3

steps in their direction, while, if it is “yellow” then all

patches will become yellow colored.

It is worth noting that in the third case (see Example 3

and Figure 2), the string directly reports a sequence of

commands, respectively: i) “ask turtles with color = red [fd

3]” - all red turtles will be moved straight on their direction

of 3 steps, while, ii) “ask patches with pcolor = yellow [set

energy 0]” - the energy level of all yellow patches will be

decreased to zero.

Fig. 2 NetLogo Wolf – Sheep Predation

__extensions["PReDAextension.jar"]

to setup

 …

 setup-turtles

 setup-patches

 set clock 0

 …

 Discovery(rmt-ctr-turtles, rmt-ctr-patches)

 startCommFrmwrk

end

to GO

 …

 ask turtles

 [

 …

run fd recvmsg ;; (Example 1)

 …

]

 ask patches

 [

 …

run set pcolor recvmsg ;; (Example 2)

 …

]

 …

 run recvmsg ;; (Example 3)

 …

 set clock clock + 1

end

CONCLUSIONS AND FUTURE WORK

In this work, we have introduced the Proximate

Remotely Driven Agents (PReDA) framework. PReDA is a

prototypal framework based on the Netlogo environment and

its “Extensions” module. PReDA exploits the Bluetooth

connectivity in order to discover other PReDA copies

running on top of mobile devices. Each mobile device runs a

local virtual world composed by an environment and a set of

agents. In this way, the PReDA-based virtual worlds running

in each mobile device can interact together, taking control of

a part of the remote agents. Since each player can easy

modify the behavior of agents and since the game is subject

to random interactions, the evolution of the game will result

very unpredictable.

As a future work, we aim to build a real game based on

the proposed paradigm. Furthermore, we plan to develop a

light version of the PReDA framework that will run on Java-

enabled mobile phones.

Another direction of this research will involve the study

of the behavior of nomadic users and the impact of the

proposed paradigm on social sciences.

REFERENCES

Björk S., Falk J., Hansson R., Ljungstrand P., 2001 Pirates! - Using

the Physical World as a Game Board. in proc. of Human-

Computer Interaction conference (July), Tokyo, Japan.

Cacciaguerra S., Mirri S., Pracucci M., Salomoni P., 2006.

“Wandering about the City, Multi-Playing a Game” in proc. of

IEEE International Workshop on NIME (January), Las Vegas

(NV-USA).

Cacciaguerra S., Roccetti M., Roffilli M. Lomi, A, 2004. “Wireless

Software Architecture for Fast 3D Rendering of Agent-Based

Multimedia Simulations on Portable Devices” in Proc. of the

First Consumer Communications and Networking Conference

(CCNC), IEEE Communications Society (January), Las Vegas

(NV-USA)..

Chen H., Finin T., 2003 “An Ontology for a Context Aware

Pervasive Computing Environment”, in Proc. of IJCAI

Workshop on Ontologies and Distributed Systems.

Colella V., Borovoy R., Resnick M., 1998 “Participatory

Simulations: Using Computational Objects to Learn about

Dynamic Systems” in Proc. of Computer Human Interface

Conference, (April) Los Angeles (USA - CA).

Kanter T. G., 2003 “Attaching Context-Aware Services to Moving

Locations” in IEEE Internet Computing Magazine,(March-

April) Vol. 7, N. 2.

Kawanishi N, Kawahara Y., Morikawa H., Aoyama T., 2005

“Prototyping a Real-World-Oriented Monster-Collection

Game” in Proc. of 5th International Workshop on Smart

Appliances and Wearable Computing, (June) Columbus,(USA -

OH).

Linden Lab 2007, “Secon Life”, http://www.secondlife.com/.

Liu L., e Ma, H., 2006 “Wireless Sensor Network Based Mobile

Pet Game”, In Proc. of NetGames, (October), Singapore.

North M.J., Collier N.T., Vos J.R., 2006 “Experiences Creating

Three Implementations of the Repast Agent Modeling Toolkit”,

in ACM Transactions on Modeling and Computer Simulation,

Vol. 16, Issue 1, pp. 1-25, (Jannuary), New York (USA - NW).

Peitz J., Saarenpää H., Björk S., 2007 “Insectopia - Exploring

Pervasive Games through Technology already Pervasively

Available” in Proc. of Advanced in Computer Entertainement

Technology, (June) Salisburg (Austria).

Riley P., 2003 “SPADES: System for Parallel Agent Discrete Event

Simulation”, in AI Magazine.

Terna P., 2003 “Decision making and enterprise simulation with

jES and Swarm.”, in Proc. of the Seventh Annual Swarm

Users/Researchers Conference (April), Notre Dame, Indiana

(USA - IN).

Swarm Development Group. 2007 “Swarm” http://www.swarm.org

Swarm Development Group, Santa Fe (USA – NM).

Wilensky U., 2007 “NetLogo” http://ccl.northwestern.edu/netlogo/.

Center for Connected Learning and Computer-Based Modeling,

Northwestern University, Evanston, IL.

Wilensky U., Stroup W., 2007 “HubNet”

http://ccl.northwestern.edu/netlogo/hubnet.html. Center for

Connected Learning and Computer-Based Modeling,

Northwestern University. Evanston, IL.

