
Analysis of High Performance Communication
and Computation Solutions for Parallel

and Distributed Simulation�

Luciano Bononi, Michele Bracuto,
Gabriele D’Angelo, and Lorenzo Donatiello

Dipartimento di Scienze dell’Informazione, Università degli Studi di Bologna,
Via Mura Anteo Zamboni 7, 40126, Bologna, Italy

{bononi, bracuto, gdangelo, donat}@cs.unibo.it

Abstract. This paper illustrates the definition and analysis of a collec-
tion of solutions adopted to increase the performance of communication
and computation activities required by the implementation and execution
of parallel and distributed simulation processes. Parallel and distributed
simulation has been defined, and a real testbed simulation scenario has
been illustrated, based on the ARTÌS simulation framework. Three classes
of solutions have been proposed to improve the performance of simulations
executed over commodity off-the-shelf computation and communication
architectures: multi-threaded software and Hyper-Threading support by
the processor architectures, data marshalling solutions for shared-memory
and network-based communications, and data structure optimization for
simulation events’ management. All the proposed solutions have been
evaluated on a testbed evaluation scenario, under variable configurations.
Results obtained demonstrate that a performance improvement can be
obtained by adopting and tuning the proposed solutions.

1 Introduction

“A simulation is a system that represents or emulates the behavior of another
system over time. In a computer simulation the system doing the emulating is a
computer program” [13]. The computer simulation is a widely adopted technique
to obtain “a priori” insights of behavioral issues, and performance evaluation of
theoretic, complex and dynamic systems and system architectures. At an ab-
stract level, a simulation can be seen as a process execution managing a huge
set of state variables: each variable update is activated by a simulated event.
Every update may require a complex state computation, and would represent a
step in the behavior of a portion of the simulated system. The simulation can be
implemented by one (single or monolithic) process, or more than one (parallel
or distributed) processes. Monolithic simulations may suffer the bottleneck lim-
itation of memory and computation, being executed over single CPUs. On the
� This work is supported by MIUR FIRB funds, under the project: “Performance

Evaluation of Complex Systems: Techniques, Methodologies and Tools”.

L.T. Yang et al. (Eds.): HPCC 2005, LNCS 3726, pp. 640–651, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Analysis of High Performance Communication and Computation Solutions 641

other hand, parallel and distributed simulations could exploit aggregate memory
and computation resources. Unfortunately, parallel and distributed simulations
may suffer the bottleneck limitation of the communication system required to
support the huge amount of synchronization and communication messages be-
tween multiple synchronized processes. The aim of this paper is to introduce
main motivations and new dimensions for the research about scalability and ef-
ficiency issues of simulation frameworks executed over general purpose system
architectures. Specifically, in this paper some recently introduced solutions for
the processor architectures and communication network technologies have been
preliminary investigated. The results presented involve the performance analysis
and guidelines derived about the mixed adoption of Hyper-Threading processors,
single-threaded and multi-threaded software architectures, data marshalling so-
lutions for communications and data structure optimizations. Results obtained
confirm that performance speedup can be obtained by considering and exploiting
the proposed features, by offering experimental evidence to practical guidelines
and limitations.

The paper structure is the following: section II illustrates some general con-
cepts about the execution of simulation processes, that will be useful to define
the assumptions and guidelines for subsequent work, section III will illustrate
the state of the art in the field of parallel and distributed simulation and will
introduce the simulation framework that we adopt as a testbed for our analysis
(ARTÌS), section IV will illustrate the analysis of the Hyper-Threading features
of processors in the context of parallel and distributed simulations, section V will
illustrate the Data Marshalling concept and analysis to improve the communi-
cation efficiency, section VI will illustrate the simulation Data Structure opti-
mization concepts and related analysis, and section VII will conclude the paper.

2 Simulation: Assumptions, Systems and Optimization

The aim of a simulation is to create a synthetic evolution of the system model,
in order to capture data about the behavior of the model counterpart, that is,
a real system behavior. The evolution of model entities could be defined as the
history of state updates as a function of the simulated time. The system entities’
evolution is emulated by a computer program that mimics their causal sequence
of fine-grained state transitions, that is, the system events.

In the legacy approach for a computer simulation, the simulation software
is executed on a single processing unit, by obtaining a monolithic simulation.
Memory and computation bottlenecks may limit the model scalability and of-
ten require huge amount of time to complete the analysis. The need to evaluate
complex systems with thousands or even millions simulated entities is often im-
possible to satisfy due to resources’ limitations [12]. An alternative approach is
based on the exploitation of parallel and distributed communication and com-
putation systems [13]. The advantage of Parallel and Distributed Simulation
(PADS) techniques is given by the exploitation of aggregate resources (memory
and computation power of a collection of Physical Execution Units, PEUs) and

642 L. Bononi et al.

by the potential exploitation of the model concurrency under the model-update
and state-computation viewpoint. This may translate in a reduction of the com-
putation time required to complete the analysis of the model evolution in a given
scenario. A PADS framework is composed by a set of cooperating computation
units managing the model state evolution in distributed way. The simulation is
partitioned in a set of Logical Processes (LPs), each one managing the evolution
of a subset of simulated model entities.

3 Parallel and Distributed Simulation: State of the Art

The parallel and distributed simulation (PADS) field has been widely studied in
the past, resulting in the design and implementation of many tools to assist the
simulation processes. In recent years, a good number of PADS tools have been
proposed: Maisie [6], PDNS [7], DaSSF [1],TeD [2,15], Glomosim/Qualnet [8].
Unfortunately, weak performances and the lack of a standard have limited the
adoption and interoperability of tools, and the model reuse, with low potential
impact of PADS technology on real world applications. After the year 2000, under
the auspices of the US Department of Military Simulation Office (DMSO), the
IEEE 1516 standard for distributed simulation (High Level Architecture, HLA)
has been approved [5]. ARTÌS (Advanced RTI System) is a recently proposed
middleware, designed to support parallel and distributed simulations of complex
system models [10,9]. A number of existing runtimes compliant to the HLA IEEE
1516 standard are available. Some runtimes suffer of implementation problems,
the source code is often not available, and they miss interesting features (as entity
migration support, and security). These observations stimulated the design of
the ARTÌS middleware. In ARTÌS, many design optimizations have been realized
for the synchronization and communication protocols’ adaptation over hetero-
geneous execution systems (basically, Local Area Network and Shared Memory
mono- and multi-processor architectures). The communication and synchroniza-
tion middleware in charge of the adaptation is completely user-transparent. The
middleware is able to select in adaptive way the best communication module
with respect to the dynamic allocation of LPs over the execution environment.
The ARTÌS runtime (RTI) kernel is realized on the top of the communication
modules, and it is composed by a set of management modules, whose structure
and roles have been inherited by a typical HLA-based simulation middleware.

In next sections, by following a bottom-up approach, we will introduce some
details about additional optimizations that can be applied to ARTÌS (and other
PADS architectures), by exploiting high computation and communication per-
formance solutions.

4 Exploiting Advanced Processor Features: HT

The Hyper-Threading technology (HT) is a new processor architecture recently
introduced by Intel [14,4]. HT technology makes a single physical processor ap-
pearing as two logical processors at the user level. To achieve best performances,

Analysis of High Performance Communication and Computation Solutions 643

the operating system should natively support the HT technology. In general, one
physical execution resource (CPU) is shared between two logical processors. To
obtain this effect, with low overheads introduced, the HT technology duplicates
the high level portion of the architecture state on each logical processor, while
logical processors share a subset of the physical processor execution resources.
Some experimental results from Intel [14,4] have shown an improvement of CPU
resources’ utilization, together with higher processing throughput, for multi-
threaded applications with respect to single-threaded executions. Under optimal
assumptions and conditions, the performances shown a 30% increase. To the
best of our knowledge, the influence of HT technology on PADS architectures
and frameworks has not been investigated in detail. Thanks to simple heuris-
tics, HT-enabled OSes should be able to adapt the process scheduling to the
HT architecture, with the aim of optimizing the overall execution of processes.
On the application side, it is quite common for parallel and distributed simu-
lation frameworks to allocate a single LP for each available processor. This is
based on the assumption that one single LP will be the only running process
and would not cause context switches and other relevant overheads. On the other
hand, each time the LP is blocked due to communication and synchronization
delays, the CPU time would be wasted [11]. The effects of HT technology could
significantly change the assumptions related to current implementation choices.
Under the software architecture viewpoint, most of the modern PADS middle-
wares are based on multi-threaded implementation, and basically should take
advantage of the HT support. It would be interesting to evaluate if the increas-
ing in the number of logical processes could be exploited as a new dimension for
PADS optimization: to concurrently run more LPs than the number of physical
processors, under HT processor architectures.

4.1 The Experimental Testbed

To give answers to the above questions about HT technology and PADS assump-
tions, we evaluated the performances of the real ARTÌS simulation framework
on a real experimental testbed, instead of relying on synthetic CPU benchmarks.
First, we defined a scalable model of a complex and dynamic system, whose de-
finition contains many of the worst model assumptions that has been identified
as stressing conditions under the PADS framework optimization and simulation
execution performances viewpoints: the wireless mobile ad hoc network model.
The model is composed by a high number of simulated wireless mobile hosts
(SMHs), each one following a Random Mobility Motion model (RMM) with a
maximum speed of 10 m/s. This mobility model is far from being real, but it
is characterized by the completely unpredictable and uncorrelated mobility pat-
tern of SMHs. The system area is modeled as a torus-shaped bi-dimensional
grid-topology, 10.000x10.000 space units. The torus area, indeed unrealistic, al-
lows to simulate a closed system, populated by a constant number of SMHs.
The torus space assumption is commonly used by modelers to prevent non-
uniform SMHs concentration in any sub-area. The simulated space is flat and
open, without obstacles. The modeled communication pattern between SMHs is

644 L. Bononi et al.

a constant flow of ping messages (i.e. constant bit rate), transmitted by every
SMH in broadcast to all neighbors within a wireless communication range of 250
spaceunits.

4.2 The Experimental Results

All the experiments and the analysis results shown in this paper are based on
the parallel and distributed simulation of the wireless ad hoc model, under the
control, optimization and management of the ARTÌS runtime (Section 3). We
performed multiple runs for each experiment, and the confidence intervals ob-
tained with a 95% confidence level (not shown in the figures) are lower than 5%
the average value of the performance index. The experiments collected in this
section have been executed over a PEU equipped by Dual Xeon Pentium IV
2800 Mhz, 3 GB RAM. The experiments have been divided in two groups: the
first group is based on Hyper-Threading support enabled for the PEU (HT-ON),
and the second one is based on Hyper-Threading support disabled directly by
BIOS settings (HT-OFF). The ARTÌS implementation adopted in this analysis
is itself multi-threaded, and takes advantage of the multi-threading support to
manage the execution of LPs: each LP is composed by at least 3 threads (main,
shared memory and network management). The standard ARTÌS implementa-
tion implements a timed wait synchronization mechanism between the threads
that compose each LP. Alternative solutions for implementing communication
between the threads could be based on busy waiting, or signalling-based imple-
mentations.

Figure 1 shows the wall-clock time (WCT) required to complete one simu-
lation run, taken as a reference. The reference run is defined as the evolution
of 1000 time-steps of simulated time for the wireless ad hoc model with 6000
wireless SMHs. The X coordinate (LPs) shows the number of concurrent LPs
implementing the set of model entities for the reference scenario. When LP = 1,
the simulation is strictly sequential and monolithic, that is, only one proces-
sor executes the single LP incarnating the execution of all the model entities
of the simulated model. In the LP = 2 scenario, 2 LPs incarnate the set of
model entities, and each LP is allocated on a different physical processor of the
execution architecture. When LP = [3..8] the ARTÌS framework introduces a
load-sharing of model entities over LPs. In addition, ARTÌS supports commu-
nication layer adaptation, resulting in low latency communication between LPs.
Thanks to load-sharing capability of ARTÌS, the time required for completing
the simulation run (Wall Clock Time, WCT) for LP = 2 is better than the
one obtained with one LP (LP = 1). When the number of LPs grows, this
fact introduces overheads under the synchronization and data distribution man-
agement (DDM) viewpoints, while the concurrency at the CPU hardware level
is stable. For this reason, the WCT increases when LP ≥ 2 and shows addi-
tional overheads with HT-ON. On the other hand, results in Figure 1 show that
the HT-enabled PEU (HT-ON) for LP = 2 gives slightly better results than
the HT-disabled PEU (HT-OFF). For this experimental scenario, the minimum
WCT for both HT-ON and HT-OFF curves is obtained for 2 LPs. The activa-

Analysis of High Performance Communication and Computation Solutions 645

ARTìS Multi Thread (Timed Wait)

0

500

1000

1500

2000

2500

0 2 4 6 8

LPs

W
a

ll
 C

lo
c

k
 T

im
e

 (
s

)

HT OFF HT ON

Fig. 1. PEU=1, SMH=6000, ARTÌS
(Timed Wait)

ARTìS Multi Thread (Signal Based)

0

500

1000

1500

2000

2500

3000

3500

0 2 4 6 8

LPs

W
a

ll
 C

lo
c

k
 T

im
e

 (
s

)

HT OFF HT ON

Fig. 2. PEU=1, SMH=6000, ARTÌS (Sig-
nal Based)

tion of HT does not change the optimal number of LPs, but has effects on the
overall performance of the simulation processes. The reason for additional over-
heads with HT-ON could be due to the timed wait implementation of the thread
synchronization implemented by ARTÌS. For this reason, in the following Fig-
ure 2, we performed the same investigation shown in Figure 1, with a modified
version of ARTÌS. The latter version of ARTÌS is still multi-threaded, but the
synchronization among threads is implemented with a signal based approach.
In Figure 2 results show that the HT-enabled PEU (HT-ON) performs always
better than the HT-disabled (HT-OFF) version. In addition, the HT-ON sce-
nario shows an increase in the simulation scalability, with respect to HT-OFF. In
Figure 3 the HT support is evaluated with respect to a mono-threaded version of
the ARTÌS runtime architecture. This means that the ARTÌS runtime is based
on single-thread, which is responsible to manage all the model entities’ execu-
tions and to manage the communications. This test is interesting to evaluate the
behavior and performances of HT architectures when executing mono-threaded
software. Figure 3 shows that the HT support may slow down single threaded

ARTìS Mono Thread (Timed Wait)

0

500

1000

1500

2000

2500

0 2 4 6 8

LPs

W
a

ll
 C

lo
c

k
 T

im
e

 (
s

)

HT OFF HT ON

Fig. 3. PEU=1, SMH=6000, ARTÌS Monothread implementation

646 L. Bononi et al.

applications, by resulting in additional overhead. A quite strange behavior ap-
pears when LP = 4, showing a simulation slowdown (found also in Figure 2).
The reason for this behavior requires further investigation. To summarize, in
ARTÌS the HT support gives better results with signal based synchronization
among threads, with respect to timed wait synchronization. On the other hand,
HT support does not change the optimal number of LPs with respect to the
underlying PEU architecture. When the LPs are mono-threaded, the HT sup-
port appears as not influent up to a given number of LPs (up to 4 LPs in the
figures), and as an overhead when more than 4 LPs are executed (that is, when
the model entities are load-shared among more than 4 LPs) in the considered
PEU architecture.

5 Communication Optimization: Data Marshalling

The communication efficiency is one of the main factors determining the effi-
ciency of a parallel or distributed simulation. The current optimization scheme
in ARTÌS is based on a straightforward incremental policy: given a set of LPs
on the same physical host (that is, with shared memory), such processes always
communicate and synchronize via read and write operations performed within
the address space of LPs, in the shared memory. Two or more LPs located on dif-
ferent hosts (i.e. no shared memory available) on the same local area network (or
even on the Internet) would rely on standard TCP/IP connections. In ARTÌS,
every interaction between LPs for synchronizing and distributing event messages
is immediately performed over shared memory or network infrastructures. This
kind of implementation generates much more transmissions on the communica-
tion channel, and replicates the message overheads (headers and trailers) and the
channel accesses. A reduction of the overheads and channel accesses could result
in increased channel utilization and reduction of the communication bottlenecks.
In the following we will investigate if and how a message marshalling approach
could reduce the simulation WCT. The data marshalling approach consists in
the concatenation of more than one logical message in the same communication
messages. In order to control the inverse trade-off degradation in the average
communication latency, the data marshalling process is controlled by a timer:
once every a maximum time limit the messages buffered on the LP are sent in
a data marshalling packet (or frame). The proposed optimization has been ap-
plied both to shared memory and TCP/IP communications. Figure 4 shows the
results for the optimization applied to a distributed simulation architecture. The
hardware architecture is composed by 2 homogeneous PEUs equipped by Dual
Xeon Pentium IV 2800 Mhz, 3 GB RAM, with HT-enabled, interconnected by
a Gigabit Ethernet (1 Gb/sec). The simulated model for tests is the wireless ad
hoc network model described in the previous section. Different scenarios have
been modeled by varying the number of simulated entities (SHMs) in the model:
from 3000 up to 9000 simulated mobile hosts. For each experiment, the data
shown include the WCT time obtained with data marshalling ON and OFF, re-
spectively. The data marshalling applied to this simulation testbed increased the

Analysis of High Performance Communication and Computation Solutions 647

Fig. 4. PEU=2, Wall Clock Time with
Marshalling ON and OFF

Fig. 5. PEU=2, SMH=6000, Wall Clock
Time with Marshalling ON and OFF

WCT simulation performances: 48% for 3000 SMHs, 30% for 6000 SMHs, and
18% for 9000 SMHs (see Figure 4). When the number of SMHs increases, the
percentage gain reduces: this happens because the computation required for up-
dating and managing the states of many more SMHs becomes the predominant
simulation bottleneck in this system (in the place of communication bottleneck).

The Maximum Transmission Unit (MTU) of local area network communi-
cations is another factor that could be managed under the data marshalling
viewpoint. The Ethernet standard frame size has been “de facto” limited to
1500 bytes. In recent years the Ethernet bitrate has greatly increased, but the
MTU size is substantially the same. Very large MTU size could reduce com-
munication overheads (i.e. the percentage effect of headers) and could increase
the network utilization. This approach is usually referred to as the adoption of
“jumbo frames”. For this test we have interconnected two homogeneous PEUs
(defined above) by a cross-linked Gigabit Ethernet network cable. The simula-
tion model is the wireless ad hoc model with 6000 SMHs. In Figure 5 results
show that the data marshalling ON can reduce the WCT with respect to data
marshalling OFF. On the other hand, results are only slightly influenced by the
variation of the MTU size (from 1000 up to 9000 Bytes). The experiments shown
that the adoption of jumbo frames slightly increased performances (up to 3000
Bytes) when data marshalling is OFF. When marshalling is ON, the simulation
performance was almost constant up to 3000 bytes, and slightly increasing with
more than 3000 Bytes.

6 Simulation Data Structures Optimization

One of the most important data structures in a computer simulation is the repos-
itory of event descriptors. Both monolithic and distributed simulations, require
that future events are collected and executed in timestamp order. Every sim-
ulation may include the management of millions of events. For this reason, it

648 L. Bononi et al.

is important to find a really efficient data structure at least in the support of
a subset of management operations. The most frequent operations in a simu-
lation process are: insertion of a new event descriptor (insert() operation), and
extraction of the event with the minimum time stamp (extract min() operation).
Both operations should have a really low computational complexity and should
be easy to implement. Some useful data structures can be adopted to assist in
the implementation of the event repository definition and management: lists,
hash tables, calendars and balanced trees. In most cases, the better solution is
to adopt the heap data structure. “A heap is a specialized tree-based data struc-
ture. Let A and B be nodes of a heap, such that B is a child of A. The heap
must then satisfy the following condition (heap property): key(A) ≤ key(B).
This is the only restriction of general heaps. It implies that the greatest (or the
smallest, depending on the semantics of a comparison) element is always in the
root node. Due to this fact, heaps are used to implement priority queues” [3].

Given a binary heap, the worst case computational complexity for the in-
sert heap() and extract min heap() is O(log2n) (because after the extraction the
heap requires a heap re-organization (heapify) algorithm execution). We call a
classical binary heap as the “base heap” data structure. The Base Heap (BH)
demonstrates good performances in general, to implement the event repository
for a simulation process. On the other hand, by considering common assump-
tions related to the event management and event characteristics in the simulation
field, we could design even more efficient heap-based data structures. Event de-
scriptors are usually organized as heap elements ordered by time-stamp (key).
The set of events generated during a conservative simulation is usually charac-
terized by sequential time-stamp values. Moreover, the time management of a
simulation process could be time-stepped, which means that all the time-stamps
of events located in the same timestep are equal. By exploiting these common
properties of simulation processes it would be possible to implement an enhanced
version of the heap data structure. Each node of the Enhanced Heap (EH) is
now composed by a pointer to a linked list of events, including all the descrip-
tors of events with the same time-stamp value (see Figure 6). Thanks to the
principle of time-locality in the references to event descriptors in a simulation
process, the access to event descriptor with time-stamp value t is followed with
high probability by the accesses to event descriptors with the same time-stamp
value. For this reason, by caching the pointer to the linked list of simultaneous
events in the simulation, the management of the EH data structure is much more
efficient than replicating search operations on the BH. This optimization allows
to avoid frequent heapify operations, by working on the cached linked lists as-
sociated with heap elements. Hence, by calling a hit the insertion or extraction
of one event descriptor to/from the cached list associated to current simulated
time t, the insert heap() and extract min heap() operations can be performed
in the majority of cases with O(1) complexity (given the time-locality simula-
tion assumption, resulting in high hit ratio) in the linked list. The complexity is
O(log(k)) in the worst case (that is, cache miss), being k the number of different
event timestamps (keys) inserted in the EH. In general, with EHs, the number

Analysis of High Performance Communication and Computation Solutions 649

Fig. 6. An Enhanced Heap (EH) data
structure

 0

 5e−07

 1e−06

 1.5e−06

 2e−06

 0 100000 300000 500000 700000 900000

T
im

e
 (

s
)

Heap Size

HEAP Extract−Min Benchmark (Base vs Enhanced)

Base Burst

Base Linear

Enhanced Linear

Enhanced Burst

Fig. 7. Benchmarks: synthetic environ-
ment, base vs. enhanced versions

of three nodes can be reduced, by adopting only one placeholder node for the
set of events with the same timestamp (key). The data structure size can be re-
duced by eliminating the time-stamp informations from all the event descriptors
in the same list (whose time-stamp is implicitly defined by the corresponding
EH node).

The Figure 7 shows the results obtained by a benchmark application (that
is, not a simulation) that has been defined to test the efficiency of the EH data
structure management. The curves show the average time required to insert
(and to extract) a group of 1000 heap nodes in base (BH) and enhanced (EH)
heap data structures, when the initial heap size has the value indicated on the
X coordinate. Two kinds of heap insertion operations have been tested: the
Burst insertion is defined as the insertion of a group of 1000 heap nodes with
the same key (time-stamp value), while the Linear insertion is defined as the
insertion of a linear sequence of 1000 heap nodes with incremental key (time-
stamp value). The data shows that the management of BH with bursts insertions
(Base Burst curve in the figure) obtains the worst performance, as expected.
The BH with linear insertions (Base Linear curve in the figure) performs a little
better than Base Burst. A great improvement in the performance is obtained
with the Enhanced Heap (EH). The EH with linear insertions (Enhanced Linear
curve in the figure) performs better than Base Burst (50% time reduction). The
EH with burst insertions (Enhanced Burst curve in the figure) obtains almost
constant performances, independent from the heap size, and results in a very
good performance index.

By testing the Enhanced Heap data structure on the simulation testbed, we
performed the simulation of the wireless ad hoc simulation model with variable
number of SMHs over the multi-threaded version of the ARTÌS framework. The
experiments have been executed over a PEU equipped by Dual Xeon Pentium
IV 2800 Mhz, 3 GB RAM, with Hyper-Threading support activated. The Figure
8 shows the impact of the Heap type (Base vs. Enhanced) on the WCT perfor-
mance for the simulations, with variable number of simulated entities (SMHs).
As expected the WCT increases, but the effect of the Heap type is marginal.

650 L. Bononi et al.

Impact of HEAP Enhancement on
Performance

0

1000

2000

3000

4000

5000

6000

7000

2000 3000 4000 5000 6000 7000 8000 9000 10000

SMHs

W
al

l C
lo

ck
 T

im
e

(s
)

BASE ENHANCED

Fig. 8. Standard wireless model (compu-
tation intensive)

Impact of HEAP Enhancement on
Performance

0

100

200

300

400

500

600

2000 3000 4000 5000 6000 7000 8000 9000 10000

SMHs

W
al

l C
lo

ck
 T

im
e

(s
)

BASE ENHANCED

Fig. 9. Modified wireless model (low com-
putation)

Only a little advantage is shown with 6000 SMHs. The reason for this fact is
the high degree of computation that is required in this model for managing each
event involving a subset of SMHs. Without entering in details, this simulation
model is defined in order to be computation intensive. For this reason the ad-
vantages in the management of event descriptors obtained with Enhanced Heaps
is hidden by the overwhelming amount of computation that follows every new
event extraction or insertion. To confirm this fact, we implemented a light com-
putation version of the same simulation model, where the computation caused
by each event is reduced more or less of a factor 10. The results shown in Fig-
ure 9 confirms our expectations. In this figure, the advantage of adopting the
Enhanced Heap is clear. The increase in the model complexity (number of sim-
ulated mobile hosts, SMHs) results in the increasing advantage of adopting the
Enhanced Heap support for event management. The low computation required
in this model, for each event, has emphasized the effect of the event management
complexity in the simulation process evolution.

7 Conclusions and Future Work

In this paper we illustrated the definition and analysis of a collection of solutions
adopted to increase the performance of communication and computation activ-
ities required by the implementation and execution of parallel and distributed
simulation processes. Parallel and distributed simulation has been defined, and
a real testbed simulation scenario has been illustrated, based on the ARTÌS par-
allel and distributed simulation framework. Three classes of solutions have been
proposed to improve the performance of simulations executed over commod-
ity off-the-shelf computation and communication architectures: multi-threaded
software and Hyper-Threading support by the processor architectures, data mar-
shalling solutions for shared-memory and network-based communications, and
data structure optimization for simulation events’ management. All the proposed

Analysis of High Performance Communication and Computation Solutions 651

solutions have been evaluated on real testbed evaluation scenarios, and under
variable configurations. Results obtained demonstrate that a performance im-
provement, summarized by the Wall Clock Time (WCT) required to complete the
simulation processes, can be obtained by adopting and tuning the proposed solu-
tions in opportune way. The experimental analysis has provided some interesting
guidelines about the way to adopt and to compose the proposed solutions, un-
der the considered simulation testbed. Some guidelines indicate that the system
bottleneck could change depending on the model and system assumptions. Most
of the guidelines have been commented under the general context assumptions,
and could be considered generally extensible to other simulation frameworks,
models and execution scenarios. Future works include the analysis of more wide
simulation scenarios, and the detailed analysis of resource utilization metrics.

References

1. Dartmouth SSF (DaSSF). http://www.cs.dartmouth.edu/research/DaSSF/.
2. GTW/TeD/PNNI. http://www.cc.gatech.edu/computing/pads/teddoc.html.
3. Heap, From Wikipedia, the free encyclopedia.

http://en.wikipedia.org/wiki/Heap.
4. Hyper-Threading Technology on the Intel Xeon Processor Family for

Servers. http://www.intel.com/business/bss/products/hyperthreading/
server/ht server.pdf.

5. IEEE Std 1516-2000: IEEE standard for modeling and simulation (M&S) high
level architecture (HLA) - framework and rules, - federate interface specification, -
object model template (OMT) specification, - IEEE recommended practice for high
level architecture (HLA) federation development and execution process (FEDEP).

6. Maisie Programming Language. http://may.cs.ucla.edu/projects/maisie/ .
7. Parallel / Distributed ns. http://www.cc.gatech.edu/computing/compass/pdns/.
8. SNT: QualNet. http://www.qualnet.com.
9. PADS: Parallel and Distributed Simulation group, Department of Computer Sci-

ence, University of Bologna, Italy. http://pads.cs.unibo.it, 2005.
10. L. Bononi, M. Bracuto, G. D’Angelo, and L. Donatiello. ARTÌS: a parallel and

distributed simulation middleware for performance evaluation. In Proceedings of
the 19-th International Symposium on Computer and Information Sciences (ISCIS
2004), 2004.

11. L. Bononi, G. D’Angelo, M. Bracuto, and L. Donatiello. Concurrent replication of
parallel and distributed simulation. In Proceedings of the nineteenth workshop on
Principles of Advanced and Distributed Simulation. IEEE Computer Society, 2005.

12. L. Bononi, G. D’Angelo, and L. Donatiello. HLA-based Adaptive Distributed
Simulation of Wireless Mobile Systems. In Proceedings of the seventeenth workshop
on Parallel and distributed simulation. IEEE Computer Society, 2003.

13. R. Fujimoto. Parallel and Distributed Simulation Systems. John Wiley & Sons,
Inc., first edition, 2000.

14. D. Marr, F. Binns, D. Hill, G. Hinton, D. Koufaty, J. Miller, and M. Upton. Hyper-
threading technology architecture and microarchitecture: A hypertext history. Intel
Technology Journal, 2002.

15. J. Panchal, O. Kelly, J. Lai, et al. Parallel simulations of wireless networks with
TED: radio propagation, mobility and protocols. SIGMETRICS Perform. Eval.
Rev., 25(4):30–39, 1998.

http://www.cs.dartmouth.edu/research/DaSSF/
http://www.cc.gatech.edu/computing/pads/teddoc.html
http://en.wikipedia.org/wiki/Heap
http://www.intel.com/business/bss/products/hyperthreading/
server/ht_server.pdf
http://may.cs.ucla.edu/projects/maisie/
http://www.cc.gatech.edu/computing/compass/pdns/
http://www.qualnet.com
http://pads.cs.unibo.it

	Introduction
	Simulation: Assumptions, Systems and Optimization
	Parallel and Distributed Simulation: State of the Art
	Exploiting Advanced Processor Features: HT
	The Experimental Testbed
	The Experimental Results

	Communication Optimization: Data Marshalling
	Simulation Data Structures Optimization
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

