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Abstract—In this paper we model peer-to-peer real-time
streaming by resorting to multistage congestion games. Based
on this, we identify a set of strategy profiles through which
the stream may be responsively distributed to all peers. We
then provide strategy restriction mechanisms which allow to
obtain equilibria where both streaming duration and congestion
are minimized. From this modeling, a distributed algorithm is
proposed (ConGaS), which can be easily executed at peers, to
let them coordinate to optimize the streaming. An experimental
evaluation is performed to compare the results obtained by
ConGaS against two other dissemination strategies. Simulation
results confirm the viability and the efficacy of this proposal.

I. I NTRODUCTION

Today, real-time streaming is considered one of the most
interesting applications in distributed systems, becauseof the
great interest shown by customers, the consequent attention
paid by software companies, and also due to the raised tech-
nical challenges to factually develop them, which attract more
and more researchers. Essentially, the problem is concerned
with those many situations where some media content is
produced and distributed in time. Onenew content unit is
periodically generated by a source (or broadcaster) and made
available to a set of interested users. The main requirement
here is that these content units must be timely disseminatedto
all users which are interested in. In other words, such distri-
bution should guarantee that the delay between the generation
of a novel media content, and its reception at a given user is
kept within a limited amount of time, with a small variance
of such delays for different content units.

While actual commercial solutions resort to classic, non-
scalable centralized approaches where the broadcaster acts as a
media server that dispatches all produced contents to all users,
another interesting and promising architectural solutionis to
employ a peer-to-peer scheme, which allows peers to share
their possessed content units, in order to fasten the content
distribution process [1], [2], [3], [4], [5], [6]. Streaming peer-
to-peer approaches address the problem of disseminating data
with the creation of specifically designed overlay networks. An
overlay network can be designed in different ways. Peers can
be logically organized as a tree, where the data flows from the
root, i.e. the broadcaster, to the leaves [7], [8], [9], a multi-tree
[6], [10], or a generic mesh [11], [12], [13]. Alternatively, more
sophisticated approaches can be utilized that, for instance,
exploit DHTs for the content distribution, e.g. [4], [14]. In

any case, when a distributed system is going to be developed
for the support of live streaming applications, three main
concerns to consider are:i) the overall load due to forwarding
activity should be evenly shared among the participants;ii)
the time needed for full dissemination should be minimized;
and iii) the protocol should be fair in that the expected time
needed to receive the whole content should be the same
across all peers. In this respect, in recent times game theory
is proving very useful for modeling communication systems
and dynamic distributed environments. Results coming from
these studies allow to identify technical solutions that take into
consideration all three concerns mentioned above.

Game theory results have already been used to design
effective mechanisms for live content distribution, but yet it
turns out that only a limited amount of proposals is available.
Among these, the majority refers to payment schemes and
incentives-based approaches [1], [15], [16], [17], [18], [19].
Some works focus on routing problems. Often, this issue is
addressed in terms of congestion (or, more generally, potential)
games [20]. In this paper, we model real-time streaming sce-
narios in terms of multistage congestion games. Specifically,
we consider a peer-to-peer approach. The cooperation among
peers is not accomplished by resorting to some structured
approach, as in other proposals. Rather, peers coordinate by
means of a protocol based on multistage congestion games.
Our modeling allows to distinguish between the number of
stages needed to fully disseminate the whole content (or
streaming length) on the one side, and stage-wise congestion
on the other. In addition, and most importantly, it enables to
identify a strategy restriction mechanism which at each stage
prevents peers from asking certain content units, given the
prevailing content distribution over the population. Withsuch
restrictions, at equilibrium both streaming length and stage-
wise congestion are minimized. This is detailed by means of
a distributed algorithmConGaS(i.e. CongestionGames for
Streaming) that we develop for implementing the proposed
equilibrium selection method. We compare the proposed ap-
proach with respect to a mechanism that implements less
restrictions for the peers’ interactions. Moreover, to obtain
insightful results, ConGaS is compared to a basic gossip
protocol for content dissemination.

The paper is organized as follows: in Section II we introduce
the theory based on the multistage congestion games to model
live streaming applications. In Section III, we show that a
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simple strategy restriction mechanism allows to minimize,at
equilibrium, both streaming length and stage-wise congestion.
In Section IV the model is translated into a distributed algo-
rithm; its functioning is evaluated in Section V. Section VI
provides insights about the implementation issues of ConGaS.
Some remarks conclude the paper (Section VII).

II. M ODELLING L IVE STREAMING WITH MULTISTAGE

CONGESTIONGAMES

A. Background

We employ a round-based time modeling. Stream produc-
tion occurs over a finite time-sequencet = 0, 1, . . . , T . The
source(denoted by0) provides one new unitct of content at
each stage/roundt. A setN = {1, . . . , n} of peersis involved
in content distribution. Also letN0 = {0, 1, . . . , n}.

Stream distribution may be modeled as amultistage game
by means ofcongestion game forms[21]. A multistage game
can be viewed as atree, whose nodes correspond to a moment
at which at least one player has to take action. Paths in this
tree correspond to distinct courses the game may take. In the
model we assumeperfect information: when asked to take
action, at any timet, all players know exactly what node has
been reached att (then we will show how this can be factually
implemented in the distributed algorithm). Astrategy, for a
player, specifies an (admissible) action to take at each node.
In our game, players are the peers.

When modeling real-time streaming as multistage conges-
tion game, it is necessary to define therules of the game (or
constraints on the players’ actions), which in this case are

Ru1: at each roundt the source can send each unitct only to
one peer;

Ru2: if a peer at t has received unitsct1 , . . . cth , 0 ≤
t1, . . . , th < t, then at each round this peer can send only
one of such units and to one other peer;

Ru3: in any round, each peer may receive some unit either
from one other peer, or else from the source.

Nodes in the game tree are identified each by a time-indexed
set Ct = {Ct

0, C
t
1, . . . , C

t
n}, where Ct

i ⊆ {c0, c1, . . . , ct}
specifies what content units peeri ∈ N0 has received at timet.
For everyi ∈ N , a strategy specifies, for each game tree node
Ct, somej ∈ N0 from whom to ask, in roundt, a content
unit ct

′

, 0 ≤ t′ ≤ t. These strategies are finite sequences as
long as some upper boundT∗ on duration exists.

Let G denote the set of all game tree nodes, i.e. the
family of all possible content distributions over peers that
may be reached along some game course, under Ru1-3, but
independently from what game courses prevail, and at what
time. In our model, a strategyAi for peer i ∈ N has form
Ai : G → N0, with Ai(C) = j 6= i denoting the onej ∈ N0

from whom i asks to receive at game tree nodeC ∈ G. In
the following, we use players’ strategies (and restrictions on
them) to identify a viable algorithm for real-time streaming.

B. Congestion Games and Forms

In a congestion game form there is a setN of players and a
setM of facilities, and each playeri ∈ N has a setΣi ⊆ 2M

of strategies, where2M is the (power) set of all subsets ofM .
Usually,M is the edge set of a graph, and each playeri ∈ N

has to reach a destinationvdi from an originvoi . Then, the set
Σi of strategies fori contains all (edges of)voi − vdi -paths.

A congestion game formF = (N,M,Σ1 × · · · × Σn)
identifies a whole class of congestion games, each obtained by
specifying the payoffsπi : Σ → R+ of playersi ∈ N , where
Σ = Σ1 × · · · ×Σn. ProfileA = {A1, . . . , An} ∈ Σ of strate-
gies identifiescongestion vectorσ(A) = {σa(A) : a ∈ M}
specifying how many players have each facilitya ∈ M in
their strategyAi. That is,σa(A) = |{i ∈ N : a ∈ Ai}|. The
game ismonotonewhen eacha ∈ M has an associated utility
function ua : Z+ → R+ satisfyingua(k) < ua(k

′) whenever
k > k′, and eachi ∈ N gets a payoff given by the sum over
all the chosen facilitiesa ∈ Ai of the corresponding utility:
πi(A) =

∑

a∈Ai ua(σa(A)). Finally, a congestion game form
(and any game derived from it) issymmetricwhen the strategy
set is the same across players:Σ1 = · · · = Σn [21].

P2P streaming systems may be approached through con-
gestion games with facilities being players themselves: every
strategy profileA = (A1, . . . , An) has an associatedconges-
tion matrix σ(A) = {σi

C(A) : C ∈ G, i ∈ N0}, where

σi
C(A) = |{j ∈ N : i = Aj(C), Ci 6⊆ Cj}|

is the number of peers who ask to receive fromi ∈ N0 some
content thatthis latter has but they miss(at generic game tree
nodeC ∈ G) 1.

Denote byκ = |G| the whole number of game tree nodes.
A strategyAi for a peeri ∈ N can be regarded as a point
Ai ∈ Nκ

0 , as it specifies somebody (although possibly with no
additional content) to ask from at each nodeC ∈ G that may
be reached. Hence, the corresponding congestion game form

is F =



N,Nκ
0 , N

κ
0 × · · · ×Nκ

0
︸ ︷︷ ︸

n



.

Players’ payoffsπi : Nκn
0 → R+ are assumed to consist of

a sum over nodes of some utility orper-nodepayoff received
at each game tree nodeC ∈ G. This utility depends on the pre-
vailing content distribution (which is precisely what the game
tree nodeC specifies), and on the profileA1(C), . . . , An(C)
of per-nodestrategies that players choose at nodeC. Hence,
per-node payoffs received by peersi ∈ N may depend on
congestion, which here is the number of other peersi′ ∈ N

with the same (valid) per-node strategyAi′(C) = Ai(C). This
models real-time streaming in terms of congestion games with
facilities being pairs(j, C), where j ∈ N0 is either a peer
or the source andC = Ct is a game tree node or content
distribution that may prevail at timet.

In a simplest form, the payoffπi(A) of any given strategy
profile A to a peeri is the sum, over all conceivable game

1If a peer asks to receive from someone who has no additional content, then
such a request is simply ignored by the system: it causes null congestion. A
request isvalid if it contributes to congestion.
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tree nodesC, of the values taken by utilityuCj
, which in turn

depends only on congestionσj
C(A), that is,

πi(A) =
∑

C∈G

∑

j∈N0:Cj 6⊆Ci

Ai(C)=j

uCj

(

σ
j
C(A)

)

. (1)

For any strategy profileA, each peeri gets a utility at each
nodeC which depends exclusively on the numberσ

j
C(A) of

those with the same (valid) per-node strategy.
A profile A = (A1, . . . , An) is Pareto-optimal if there is no

profile B = (B1, . . . , Bn) such thatπi(B) ≥ πi(A) for all
i ∈ N , with strict inequality for at least onei. Hence, from
an aggregate perspective, Pareto-optimal profiles are efficient:
there is no chance of improving someone’s payoff without
deteriorating someone else’s one. Congestion games allow
for neat conditions under which desirable properties, suchas
Pareto-optimality and strength of equilibrium, attain. Infact, in
symmetric and monotone such games, these properties depend
on the structure of the unionΣU = ∪i∈NΣi of strategy spaces.
In particular, on whether abad configurationappears or not.
Formally, ΣU displays a bad configuration when there are
three strategiesX,Y, Z ∈ ΣU and two facilitiesx, y ∈ M

such thatx ∈ X 6∋ y and x 6∈ Y ∋ y but x ∈ Z ∋ y.
Thus, two facilities give rise to a bad configuration if there
are strategies inΣU which use one of them but not the other,
and there is also a strategy inΣU which uses both of them.
The latter never occurs ifΣU consists of singletons[21, pp.
87-88]. As the name suggests, it is desirable that no bad
configuration exists. Here facilities are players themselves,
although any fixed player corresponds to two distinct facilities
when referring to two distinct game tree nodes. By Ru3 above,
strategies are time-sequences of singletons, and hence thesafe
case applies.

If πi(A−i, Ai) ≥ πi(A−i, Bi) for all i ∈ N andBi ∈ Nκ
0 ,

whereA−i ∈ N
κ(n−1)
0 is a n − 1 profile for peersj ∈ N\i

as well asAi ∈ Nκ
0 is a strategy for peeri, then(A−i, Ai) is

an equilibrium. In particular,A = (A1, . . . , An) is a strong
equilibrium if for no coalition ∅ 6= S ⊆ N is there a
choice ofBi ∈ Nκ

0 for coalition membersi ∈ S such that
πi(BS , AS) > πi(A) for all coalition membersi ∈ S, where
(BS , AS) denotes the profile in which eachi ∈ S chooses
Bi and eachj ∈ Sc = N\S choosesAj . In words, no non-
empty coalition can deviate from strong equilibrium profiles
and thereby strictly increase the payoffs ofall its members.

When considering the implications of strong equilibrium
for S = N , one gets similar conditions as those identify-
ing Pareto-optimal profiles. In fact, as strategies are time-
sequences of singletons, the model provided thus far yields
a symmetric monotone congestion game with no bad config-
uration, where therefore the set of strong equilibria is non-
empty, coincides with the set of equilibria and, generically, is
(weakly) included in the set of Pareto-optimal profiles [21].

C. Best-case Equilibrium

One indicator of streaming efficiency is simply the number
of rounds needed to spread the whole content over the whole

peer setN . Assume the number of peers is a power of2, that
is, n = 2m for some naturalm. Under our assumptions Ru1-
3, any content unit can spread over the whole population no
faster than throughm + 1 (consecutive) rounds. This is easy
to see, as each peer can send/receive a content unit per round,
while the source is allowed to distribute that unit only once,
to a single peer. Therefore, after the source transmits the unit
to a given peer (this costs one round), the number of peers
that possess that unit can at most double each round, hence
the lower bound for a single unit distribution islog2 n = m

rounds. A crucial fact is thatall the T + 1 content units of a
stream may be distributed to all peers in exactlym+1 rounds.
Still, in view of Ru1-3 this can only be achieved if whenever a
peer receives a unitct in roundt+ k, this peer forwardsct to
other peers for the remainingm−k rounds. As a consequence,
being already involved in the distribution ofct, during these
rounds this peer cannot receive units to be further forwarded.
That is to say, during each of these remainingm−k rounds, the
peer can receive only some unit that completes its distribution
at that round, i.e. the peer is among those2m−1 who are the
last ones to receive that unit. This not only is feasible, butcan
be obtained through many different streaming trees, as detailed
in the following.

Definition 1: profile A ∈ Nκn
0 is deterministicif ∀i ∈ N ,

(a)
∣
∣
{
C ∈ G : Ai(C) = j, Cj 6⊆ Ci

}∣
∣ = T + 1,

(b) Ai(C) = j, Cj 6⊆ Ci ⇒ |Cj\Ci| = 1 for all C ∈ G.

Hence, each peer makes exactlyT+1 valid requests to receive,
and receives some (distinct) content unit for every request.
Also, the T + 1 valid requests made by any peeri are all
addressed, each at a different game tree node, to someone who
at that node has precisely one additional content unit. The
namedeterministicis due to the assumption that transitions
from one game treet-node Ct to t + 1-nodesCt+1 may
be stochastic: a generic strategy profileA does not yield a
unique game course, but a probability distribution over game
courses. Whatever its form, an underlying probabilistic model
essentially decides who gets what when multiple peers ask
to receive from a commonj. Deterministic profiles actually
allow to ignore the underlying probabilistic model, putting
probability1 on one game course and probability0 on all other
courses. Accordingly, consider the unique content distribution
over peers reached att by deterministic profileA, and denote
it by Ct(A) = {Ct

0(A), C
t
1(A), . . . , C

t
n(A)}.

Definition 2: a deterministic profileA ∈ Nκn
0 is fastest

streamingif for all 0 < k ≤ t ≤ T∗,
∣
∣
{
i ∈ N : ct−k ∈ Ct

i (A)
}∣
∣ = min{2m, 2k−1}.

We denote byA∗ the set of fastest streaming profiles. These
profiles spread each content unitct over20 = 1 peer in round
t (i.e. from the source to a peer), over (new)20 = 1 peer in
roundt+1 (i.e. from that peer to another), over21 = 2 peers
in roundt+2 (i.e. from the two peers that have the content to
other two), and so on, until (new and final)2m−1 peers receive
unit ct in roundt+m, which is them+1-th (i.e. final) round
where this unit circulates.
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Consider a generict such thatm ≤ t ≤ T . For any
A ∈ A∗, in round t there are exactlym + 1 content units
ct, ct−1, . . . , ct−m being distributed across the whole popu-
lation, out of which preciselym (i.e. ct−1, ct−2, . . . , ct−m)
are sent by some peers to some other peers, while one unit
(i.e. ct) is sent from the source to some suitably chosen peer.
Hence, in this roundt each peer is a receiver (of some unit
ct−k, 0 ≤ k ≤ m). Conversely, only2m − 1 peers also send
(units ct−k, 1 ≤ k ≤ m), as the source forwardsct.

Definitions 1 and 2 may be turned into a useful method
for establishing, for any course of the game reached up to
any time t ≥ 0, how to proceed in roundt in order to have
a streaming inducted by a strategy profileA ∈ A∗. In fact,
all priorities can be captured by the cited main constraint:for
any t ≥ 0, if in the previous round a peer has received and/or
forwarded some unit that will have to be forwarded in round
t+1 as well, then in this roundt this peer cannot receive any
unit that will also have to be forwarded in roundt + 1. Put
it formally, let Sk

t be the subset of peers whosendunit ct−k

in round t (1 ≤ k ≤ m), andRk
t be the subset of peers who

receiveunit ct−k in round t (0 ≤ k ≤ m). Then, if i ∈ Sk
t−1

or i ∈ Rk
t−1 for somek ≤ m − 2, or t ≥ m and i 6∈ Sk

t−1

for all k ≥ 1, then i 6∈ Rk
t for all k ≤ m− 1.

Many different streaming tree evolutions allow to spread
the whole content over the whole peer population in a way
such that each unitct reachesnew2k−1 peers in each round
t + k for k = 1, . . . ,m. Also note that all of them satisfy
condition (a) (in Definition 1), as at any nodeC and for any
two peersi, j ∈ N we have |Ci\Cj | ∈ {0, 1}. Still, with
payoffs given by (1) above, fastest streaming is not sustainable
at equilibrium, because condition (b) (in Definition 1) is too
demanding: selfish (and myopic) peers try to receive some unit
in any round until they get the whole content.

D. Worst-case Equilibrium

Given the P2P setting, where peers always satisfy precisely
one (randomly selected) valid request among those received, in
each round the number of distributed units equals the number
of those who are asked to forward through some valid request.
At equilibrium such a number equals the minimum between
the number of those who have some units that someone else
is missing and the number of those who miss some unit.

Claim: the upper bound for equilibrium streaming length is
T∗ = T + 2m + 1. For space reasons the proof is omitted but
can be found in [22].

Although worst-case equilibrium streaming length is linear
in both the whole number of produced units and the whole
number of peers, it can be rather greater than the optimal
streaming length and not feasible for live-streaming applica-
tions.

III. STRATEGY RESTRICTION

Within the proposed setting, we now provide strategy re-
strictions of the form: certain peersi ∈ N at certain nodes
C ∈ G cannot ask to receive from certainj ∈ N0. In this way,

the model defines a monotone congestion game with no bad
configuration, where equilibria are strong and Pareto-optimal.

It is possible that at an equilibrium strategy profileA each
content unitct, 0 ≤ t ≤ T reaches2k−1 new peers in each
round t + k, k = 1, . . . ,m, and thus the whole population
in m + 1 rounds, which is optimal in terms of streaming
length. Yet, such a profileA cannot be deterministic, as any
equilibrium profileA must result in a congestionσj

C(A) > 1
for some(j, C)-entries of the associated matrixσ(A). In fact,
each (greedy) peeri makes a valid request to receive as long as
the whole content has not been received. Hence, equilibrium
profilesA surely yield some congestion, and provide a stream-
ing length which ranges from the optimal (i.e. minimum) one
T +m+1 to the worst-case oneT +2m+1. Then, for a social
planner there are two priorities when designing restrictions: i)
at equilibrium (with restrictions) streaming length should be
T + m + 1, the same as with fastest streaming profiles;ii)
congestion should be minimized.

Consider a strategy restriction mechanism which specifies
from what j ∈ N0 each peeri ∈ N can ask for content at
each nodeCt. In other terms, the mechanism specifies for any
nodeCt = (Ct

0, C
t
1, . . . , C

t
n) and for anyi ∈ N, j ∈ N0 such

thatCj 6⊆ Ci, whether it may bej = Ai(C) or not. Consider
the following per-node restriction mechanism: for alli ∈ N

andCt ∈ G

Rm1: if ct−k ∈ Ct
i for somek ≤ m− 1, thenAi(Ct) 6= j for

all j ∈ N0 such thatct−k′

∈ Ct
j for somek′ < m;

Rm2: if ct−m 6∈ Ct
i , thenAi(Ct) = j for somej ∈ N0 such

that ct−m ∈ Ct
j .

In this way, if, given previous history, a peer int has some
content unitct−k that must be forwarded in roundt+1, then in
this roundt the peer cannot ask to receive from thosej ∈ N0

who in t have unitsct−k′

to be also forwarded in roundt+1
(i.e. such thatt− k′ +m > t).

Restriction mechanism Rm1-2 above is useful for exploiting
selfish behavior toward socially desirable outcomes. In partic-
ular, the mechanism is simple and, most importantly, specifies
conditions only in terms of the generic nodeCt that may be
reached at some timet during game course. More details can
be found in [22].

IV. CONGAS

We now detail a distributed algorithm derived from the use
of CongestionGames forStreaming as described thus far, and
hence referred to as ConGaS. It provides minimal streaming
length. For simplicity of exposition, it is here detailed for the
case where the number of peers is a power of two. In fact,
the algorithm works for any numbers of peers, although the
general case requires additional procedures that can be ignored
under our assumptionn = 2m.

A first point worth of mention is that in the theoretical model
provided thus far, peers have a perfect knowledge of the game
course. In other words, all peers know what other peers are
doing, i.e. which contents they are sending/receiving during
each round. Certainly, the use of communication protocols to
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Algorithm 1 ConGaS
I NITIALIZATION

1: p = IDNODE()
2: if (p == 0 ) then
3: s ← GENERATESEED()
4: BROADCAST(s)
5: end if

DISTRIBUTION L OOP

1: for all t ∈ [0,T ] do
2: NextFree ← N = N0 \ {0}
3: S t = 0
4: Rt = N

5: for k = max(t −m, 0) to t do
6: for all p ∈ S k do
7: MANAGEDISTRIBUTION(p, k)
8: end for
9: end for

10: p = IDNODE()
11: if (p == 0 ) then
12: ct = NEWCHUNK()
13: end if
14: MANAGEDISTRIBUTION(0, t)
15: end for

1: function MANAGEDISTRIBUTION(p, t)
2: recv ← NEXTRECV

(

Rt , s
)

3: MUSTSEND
(

p, recv , ct
)

4: ADD
(

recv ,S t
)

5: REMOVE
(

recv ,Rt
)

6: REMOVE
(

recv ,NextFree
)

1: function NEXTRECV(AvailRecvs, seed )
2: repeat
3: n ← RANDOMPEER(seed)
4: until n ∈ NextFree ∩AvailRecvs
5: return n

implement this sharing of global knowledge among peers is a
non-viable solution. The time and bandwidth used to distribute
all such information would extremely complicate the task of
disseminating contents. Another, viable solution is to letpeers
share a seed employed to randomly generate same sequences
of pseudo-random numbers. Such shared seed serves as the
needed coordination mean among nodes (i.e. it is employed
to randomly select those peers that receive any given content
unit). A description of ConGaS follows (see also the reported
Algorithm): during the initialization, the broadcaster (i.e. node
0) sends to all peers a generated seed value. In practice, this
simple broadcast is the sole operation required to enable peers
to have perfect knowledge on the distribution process. The dis-
tribution loop consists of an iterative behavior: each iteration
t corresponds to the production, at the broadcaster, of a novel
content unitct to be distributed. Meanwhile, on-going content
units ct−k , k = 1 , . . . ,m that have not yet been delivered
to all peers are disseminated according to our method (lines
5-9 of the distribution loop). TheMANAGEDISTRIBUTION()
procedure, executed by all nodes, defines who sends what
content unit to who. Differences in peers’actionsare simply
determined accordingly to theirids.

At each iterationt, each peer can receive a single, new
content unit. This is achieved by picking nodes from an
auxiliary list NextFree, which is initialized toN (line 2), and
then progressively emptied through different calls ofMAN -
AGEDISTRIBUTION() (line 7). Specifically, given a content
unit ck being distributed (t−m ≤ k ≤ t), a bijection between
those who have the unit (sendersSk in the code) and (some of)
those who do not (receiversRk in the code) is provided. Thus,
for any content unit, at eachh-th step of distribution,2h nodes
have the content unit and2h are selected to be the receivers.
Once the distribution for the on-going content units is speci-
fied, a new content unit is produced at the broadcaster (lines
11-13) andMANAGEDISTRIBUTION() is called for the novel
content unit. In detail, inMANAGEDISTRIBUTION() a new
receiverrecv is identified thoughtNEXTRECV(). MUSTSEND()
schedules the delivery of the content unit from senderp to
recv. Moreover,recv is added intoS k (the list of ck senders;
line 4). Accordingly,recv is removed from the list of receivers
Rk (as well as from the list of those who may be selected as
receivers of ongoing content units; lines 5-6).NEXTRECV()
randomly selects receivers. In simple words, a (novel) nodeis
picked until someone is found in the intersection ofNextFree
and AvailRecvs(i.e. the set of those who have not already
been selected as receivers of the considered unit). Finally,
MUSTSEND() makes thus far identified senders actually send
the on-going units, based on the nodes’id.

V. PERFORMANCEEVALUATION

The performance evaluation of ConGaS has been conducted
following a simulation-based approach. In detail, a dedicated
simulator has been designed and implemented to verify the
validity of our assumptions and theoretical results. The sim-
ulator models the evolution of the distributed system both in
terms of participants and communication protocols.

In order to evaluate our streaming method, ConGaS, it is
necessary to find a metric and a benchmark for comparison.
From a game theoretical point of view, such an issue, in
general, is known as theprice of anarchy[23] or the price
of stability, depending on whether the social optimum is
compared with the worst or else with the best equilibrium
outcome. In simple terms, ConGaS actually selects a subset
of Nash equilibria; in this case, one of the aims is to compare
the average outcome of such equilibria with respect to the
average overall equilibria. Basically, (average) equilibrium
outcomes (referred to as “equilibrium”) is implemented simply
by ignoring restriction mechanism Rm1-2. Specifically, at any
staget ≥ 0, each peeri ∈ N who still misses some unit
randomly selects some valid forwarderj ∈ N0, if any, and
then receives the oldest unit inCt

j\C
t
i . Whenever the number

of receivers exceeds that of forwarders, the probability of
being among those who receive (and thus also that of being
among those who do not) is the same across all potential
receivers. Finally, ConGas is also compared with a basic gossip
protocol (referred to as “disequilibrium”). In this case, not
only restriction mechanism Rm1-2 is ignored, but also and
most importantly congestion can cause a peer to miss one
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or more slots, in which it will not receive any content unit.
Our metrics, used to compare the three considered schemes
are latency (measured in rounds) and itsjitter. LatencyΛ is
obtained such that, by picking at random both a peer and a
unit ct, the former receives the latter (on average) in round
t+Λ. Jitter is the variance across peers of the average latency
(over all units) they experience during the whole streaming.
Figure 1 shows the behavior of the three compared streaming
protocols/algorithms with a fixed number28 of peers and
increasing stream size. Latency with ConGaS does not depend
on stream size. Moreover, such a result is optimal given the
assumptions that only one unit can be sent/received by each
peer in every round. Conversely, both equilibrium and (a
fortiori ) disequilibrium results deteriorate substantially as the
size increases. It is worth noting that the values in the y-axis
are reported in a logarithmic scale. In detail, the gap between
equilibrium and disequilibrium is substantial. Figure 2 reports
the (average) standard deviation of latency, which is much
more limited with ConGaS rather than with the other two plots.
Here again, values are reported in log-scale, and equilibrium
performs much better than disequilibrium. Another significant
result is that dispersion is minimal with ConGaS, while it is
notable with the other two P2P exchange mechanisms. We
claim this is an important result for the implementation of
viable live streaming systems, as it corresponds to a jitter

Fig. 3. Average latency: varying number of both peers and stream size.

reduction, which is a main requirement in most multimedia
systems.

As disequilibrium performance is evidently very poor, in
the next experiment we omit it (for better appreciating the two
remaining schemes). In particular, Figure 3 shows the average
latency, measured in rounds, experienced by peers in receiving
any content unit, when varying both the number of peers
(reported here inlog2 scale) and thesizeof the streamT +1.
As predicted by our analytical results, ConGaS obtains very
stable results in terms of latency (black lines), i.e. the length of
the stream has no evident impact on performance. Conversely,
when considering generic (or non-restricted through Rm1-
2) equilibrium outcomes (light gray points), the experienced
average latency increases with number of content units. The
same also happens when the number of peers growth.

VI. I MPLEMENTATION ISSUES

In this section we discuss on some issues related to the
factual development of ConGaS in a real live-streaming sce-
nario. The are at least five points to be discussed: i) how peers
coordinate and cooperate, based on a shared knowledge of the
content distribution process, ii) the use of a round-based time
model, iii) the assumption that a single content unit can be
sent/received per each round, iv) how to make the protocol
able to cope with dynamic join/leave of peers in the system,
v) how the protocol is resilient to free-riding.

As to the need for cooperation, optimal content distribution
requires that peers agree to employ some coordination method
to guarantee, for example, that nodes involved in the distribu-
tion process do not waste their time by sending content units
to some other peers that do not need those contents (e.g. they
already received them). Many peer-to-peer solutions adopt
strategies to bypass the problem, for instance by organizing
the set of peers as a tree, multi-tree, or even employing more
sophisticated approaches (e.g. DHTs) [4], [7], [8]. From this
standpoint, our approach is more dynamic, since peers act
by changing their partners at each round, choosing them at
random. This has the advantage of augmenting the fairness of
the protocol. The cost is that peers must share the same seed
employed to construct the pseudo-random number sequence



D
R

A
FT

that regulates the content distribution. However, we claimthat
this does not introduce any particular complications which
prevent a real implementation of the scheme.

The use of rounds is widely utilized in many distributed
algorithms and communication protocols, even when stream-
ing applications are built on top of them, e.g. [1]. Of course,
in our approach we do not require perfect synchronization
among peers’ clocks, neither there is a need for employing
strict synchronization barriers. Rather, a loose synchronization
(for example based on NTP) is sufficient to guarantee that
peers are not involved in multiple content units’ transmissions
(or receptions) at the same time.

In our model, we assume that peers can send/receive only
one content unit per round. This allows to simplify the theoret-
ical analysis and the resulting protocol. If peers in the system
have similar networking resources with comparable perfor-
mances, such an assumption does not introduce any limitation
on the goodness of the protocol. When very heterogeneous
devices are involved (using different networking technologies),
such as in a mobile scenario, for instance, such an assumption
could limit the the performances of the distribution process.
We plan to extend in the future our model to consider the case
when heterogeneous peers are present in the system.

Another important issue to consider in distributed peer-to-
peer applications is the typical dynamism of peers that joinand
leave the system, hence imposing an adaptive configuration
of the peer-to-peer architecture. In this work, we did not
specifically presented schemes to cope with this problem. In
this respect, we are currently investigating methods to group
peers (that would represent a single player in the theoretical
model). This way, ConGaS can be safely executed within each
peer group, while the use of groups of peers as player in the
congestion game would certainly provide higher tolerance to
faults and churns.

Finally, participants are assumed to fully cooperate, in that
they all satisfy one request whenever they receive some valid
one. A main tool for limiting free-riding is the capability to tag
those who do not cooperate, so that everybody can recognize
them. In this respect, our proposed method constructs a new
P2P network for each content unit to be distributed, and
thereby each peer is expected to interact with all other peers
several times during the whole course, therefore incentive-
based schemes are applicable [24]. This should also discour-
age peers to maliciously exploit the shared seed employed
during the pseudo-random number generation, implementing
full knowledge of the game course.

VII. C ONCLUSIONS

In this paper we modeled P2P real-time streaming by means
of multistage congestion game forms. Under the assumptions
that at each round each peer can at most send/receive a single
content unit, then P2P content exchange can be scheduled
so thateach unit reaches everybody inm + 1 (consecutive)
rounds/stages, with corresponding whole durationT +m+1.

We provide a strategy restriction mechanism which, for any
(per stage) content distribution over peers, restricts theset

of feasible forwarders. Although simple, this mechanism is
very useful: it impedes all those requests submitted by selfish
peers at equilibrium which must be ignored to achieve minimal
duration. This allows to fasten the stream distribution to all
peers, and to minimize congestion. Based on this machinery,
we provided an algorithm (ConGaS); our simulations confirm
the viability and the goodness of the proposal.
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