
ARTÌS: A Parallel and Distributed Simulation

Middleware for Performance Evaluation?

Luciano Bononi, Michele Bracuto, Gabriele D’Angelo, and Lorenzo Donatiello

Dipartimento di Scienze dell’Informazione, Università degli Studi di Bologna
Via Mura Anteo Zamboni 7, 40126, Bologna, Italy
{bononi,bracuto,gdangelo,donat}@cs.unibo.it

Abstract. This paper illustrates the motivation, the preliminary design
and implementation issues, of a new distributed simulation middleware
named Advanced RTI System (ARTÌS). The aim of the ARTÌS mid-
dleware is to support parallel and distributed simulations of complex
systems characterized by heterogeneous and distributed model compo-
nents. The ARTÌS design is oriented to support the model components
heterogeneity, distribution and reuse, and to increase the simulation per-
formances, scalability and speedup, in parallel and distributed simulation
scenarios. Another design issue of the ARTÌS framework is the dynamic
adaptation of the interprocess communication layer to the heterogeneous
communication support of different simulation scenarios. In this paper
we illustrate the guidelines and architecture that we considered in the de-
sign and implementation of the ARTÌS middleware, and we sketch some
case studies that demonstrated the ARTÌS utility and motivation, e.g., a
distributed simulation of massively populated wireless ad hoc and sensor
networks.

1 Introduction

The design of complex systems composed by many heterogeneous components
requires appropriate analysis methodologies and tools to test and to validate
the system architectures, the integration and interoperability of components,
and the overall system performances [18]. The performance evaluation of com-
plex systems may rely on simulation techniques because the model complexity
obtained with alternative analytical and numerical techniques often results in un-
practical or unaffordable methods and computation [18,8,1,2,9,25]. Well known
sequential and monolithic event-based simulation tools have been created for
analyzing general purpose system models (e.g., computation architectures, sys-
tems on chip, database systems) [15,16] and more targeted system models (e.g.,
computer networks) [14,17]. The problem with a sequential monolithic simulator
is that it must rely on the assumption of being implemented on a single execu-
tion unit, whose resources may be limited, and it cannot exploit any degree of

? This work is supported by MIUR FIRB funds under the project “Performance Eval-
uation of Complex Systems: Techniques, Methodologies, and Tools”.

C. Aykanat et al. (Eds.): ISCIS 2004, LNCS 3280, pp. 627–637, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

628 Luciano Bononi et al.

computation parallelism. To obtain a significant insight of a complex system,
detailed and fine-grained simulation models must be designed, implemented and
executed as a simulation process, often resulting in high computation and high
memory allocation needs.

This fact translates in computation and memory bottlenecks that may limit
the complexity and the number of model components (i.e., the simulated system
scalability) that can be supported by the simulation process. One solution to
overcome these limitations can be found in parallel and distributed simulation
techniques, in which many simulation processes can be distributed over multiple
execution units. The simulation semantics, the event ordering and event causality
can be maintained and guaranteed with different approaches (e.g., optimistic vs.
conservative), by relying on distributed model-components’ communication and
synchronization services.

Parallel and distributed simulation platforms and tools have been demon-
strated to be effective in reducing the simulation execution time, i.e., in in-
creasing the simulation speedup. Moreover, parallel and distributed platforms
could exploit wide and aggregate memory architectures realized by a set of au-
tonomous and interconnected execution units, by implementing the required
communication and synchronization services. Examples of the Parallel and Dis-
tributed Discrete Event Simulation (PDES) approach can be found in [8,9], e.g.,
Glomosim [25] based on PARSEC [1], Maisie [22], parallel and distributed im-
plementations based on Network Simulator (ns-2) [14,20] based on RTI-Kit [20],
on ANSE/WARPED [19], Wippet [12], SWiMNET [3], and many others [13,22].
More recently, the distributed simulation world agreed on the need for stan-
dards, and converged in the definition of a new standard, named IEEE 1516
Standard for parallel and distributed modeling and simulation [11]. The High
level Architecture (HLA) has currently become a synonymous for the middle-
ware implementation of distributed simulation services and a RunTime (RTI)
simulation kernel, based on the IEEE 1516 Standard definition [11,4,5].

Unfortunately, the need for distributed model-components communication
and synchronization services may require massive interprocess communication to
make the distributed simulation to evolve in correct way. Complex systems with
detailed and fine-grained simulation models can be considered communication-
intensive under the distributed simulation approach. As a result, interprocess
communication may become the bottleneck of the distributed simulation
paradigm, and solutions to reduce the cost of communication must be addressed
by the research in this field [8,2,9,24]. Additional research studies, aiming to ex-
ploit the maximum level of computation parallelism, dealt with dynamic balanc-
ing of logical processes’ executions (both cpu-loads and virtual time-advancing
speeds) by trading-off communication, synchronization and speedup, both in
optimistic and conservative approaches [7,10,23,24].

The efficient implementation of interprocess communication is required as a
primary background issue, to overcome the possible communication bottleneck
of parallel and distributed simulations. The way interprocess communication
can be sustained in distributed systems would depend mainly on the execution

ARTÌS: A Parallel and Distributed Simulation Middleware 629

units’ architectures and on the simulation system scenario. Recently proposed
and implemented middleware solutions based on the IEEE 1516 Standard for dis-
tributed simulation and the High level Architecture (HLA) [11,5,4] have shown
that the parallel and distributed simulation of massive and complex systems can
suffer the distributed communication bottlenecks, due to suboptimal implemen-
tation of the interprocess communication services, over the simulation execution
platform.

In this paper we propose an overview of the design, preliminary implementa-
tion results and guidelines, for a new, parallel and distributed simulation mid-
dleware named Advanced RTI System (ARTÌS). The design of the ARTÌS mid-
dleware architecture is based on the guidelines provided by the analysis and
evaluation of existing HLA-based RTI implementations, and on the observations
about the sub-optimal design and management of distributed interprocess com-
munication. Specifically, we oriented the ARTÌS design towards the adaptive
evaluation of the communication bottlenecks and interchangeable support for
multiple communication infrastructures, from shared memory to Internet-based
communication services.

This paper is organized as follows. In Section 2 we sketch the motivations
for our study, and some comments on existing implementations. In Section 3
we present the design and architecture of the ARTÌS middleware, with some
emphasis on the implementation guidelines. Section 4 sketches some simulation
testbeds and case studies we defined to test the ARTÌS implementation. Section
5 presents conclusions and future work.

2 Motivation and Preliminary Discussion

In the following we give a short description of the motivations for this study, and
the comments that have been originated by the analysis of existing middleware
implementations of the HLA-based distributed simulation middleware.

Model components’ reuse is considered a relevant issue to be supported in
designing a new simulation system. On the other hand, model components may
be confidential information on behalf of the companies that designed them. The
owner companies could be interested, under a commercial viewpoint, in allow-
ing their models to be embedded as “black box” components for evaluating
the integration analysis and compliance with other solutions. The open model-
component source code could introduce the risk to reveal the confidential know-
how in the component design solutions. A way to overcome this problem would
be given by supporting the model component simulation in distributed way,
and more specifically, over execution units local to the owner company domain.
Distributed model components would simply export their interfaces and interac-
tions (i.e., messages) with the simulation middleware and runtime infrastructure
(RTI) implementing a distributed simulation. This scenario would require that a
general network communication infrastructure (e.g., the Internet) would support
the message passing communication between distributed model components of a
parallel or distributed simulation. This is the reason why we conceptualized a dis-

630 Luciano Bononi et al.

tributed simulation that could be performed over TCP/IP or Reliable-UDP/IP
network protocol stacks, like in web-based simulations. Under the latter assump-
tion, the distributed simulation platform is intended as a way to interconnect
protected objects, instead of a way to improve the simulation speedup. Other
possible killer applications for such a distributed simulation middleware design
would be the distributed Internet Gaming applications, gaining an even growing
interest nowadays. The opportune design of the simulation framework, based
on the exploitation of the communication scenario heterogeneities and charac-
teristics, could improve the overall simulation performance of distributed and
remotely executed processes.

The most natural and efficient execution scenarios for parallel and distributed
simulations often involve shared memory (SHM) and/or local area networks
(LAN) as the infrastructures supporting inter-process communication and syn-
chronization services. Nowadays, it is even more frequent the adoption of net-
worked cluster of PCs, in the place of shared-memory or tightly-coupled multi-
processors, as the execution units of the distributed simulation, primarily for cost
reasons. The aforementioned motivations for model reuse and wide distribution
of the model component execution is demanding for a generalized support for
inter-process communication, up to the Internet-based services. It is self-evident
how the increase of the communication cost (i.e., the communication latency of
local and wide area network-based communication) would result in a reduction
of the simulation speed. In other words, any reduction of the communication-
time cost would translate in more efficiency of the simulation processes. The
communication-time reduction could play a fundamental role in determining the
communication and synchronization overheads between the distributed model
components.

As remarked in [2], a distributed simulation approach is not always guaran-
teed to gain in performance with respect to a sequential simulation. The problem
with the distributed simulation arises when a high degree of interactions is re-
quired in dynamic environments, mapping on distributed synchronization and
inter-process communication. The basic solution to distribute the events infor-
mation among interacting distributed components was the information flooding
(broadcast) solution. This solution is quite immediate to implement over a gen-
eralized communication platform, but it was also originating the communication
bottleneck effect for the distributed simulation. It was immediately clear that a
reduction of communication would have been needed, by following two possible
approaches: model aggregation and communication filtering. Model aggregation
incarnates the idea to cluster interacting objects, by exploiting a degree of local-
ity of communications that translates in a lower communication load than the
one obtained in flat broadcast (that is, communication flooding) systems. Model
aggregation can be performed by simplifying the model, or by maintaining the
model detail. Solutions based on model simplification have been proposed, based
on relaxation and overhead elimination, by dynamically introducing higher lev-
els of abstraction and merging in system sub-models [2,19,23]. These solutions
allow a reduction of communication since the messages are filtered on the basis

ARTÌS: A Parallel and Distributed Simulation Middleware 631

of the level of abstraction considered. Solutions preserving full model-detail have
been proposed by dynamically filtering the event- and state-information dissem-
ination. Examples can be found [2], based on interest management groups [23],
responsibility domains, spheres of influence, multicast group allocation, data
distribution management [21,5], grid distribution and routing spaces [21,5,7],
model and management partitioning [3]. These approaches rely on the reduction
of communication obtained when the update of an event- or state-information
(e.g., event and/or anti-message) does not need to be flooded to the whole sys-
tem, but is simply propagated to all the causally-dependent components. This
is the basis of publishing/subscribing mechanisms for sharing state-information
and event-notifications between causally dependent components [21,5,20]. The
solution provided in order to dynamically filter the communication among dis-
tributed objects was the ancestor of the Data Distribution Management (DDM)
concept realized and implemented in HLA-based solutions [11].

The High Level Architecture (HLA) is a middleware implementation based
on recently approved standard (IEEE 1516) dealing with component-oriented
distributed simulation [11]. The HLA defines rules and interfaces allowing for
heterogeneous components’ interoperability in distributed simulation. The def-
inition of distributed model components (formally known as federates) with
standard management APIs brings to a high degree of model re-usability. The
HLA standard defines APIs for the communication and synchronization tasks
among federates. The distributed simulation is supported by a runtime middle-
ware (RTI). The RTI is mainly responsible for providing a general support for
time management, distributed objects’ interaction, attributes’ ownership and
many other optimistic and conservative event-management policies. The IEEE
1516 standard has gained a good popularity but still has not reached the planned
diffusion. The main reasons are the complex definitions and design work required
to modelers. On the other hand, the preliminary implementations of distributed
simulation middleware solutions and architectures were too complex, too slow
and required a great startup time to achieve the expected results. Specifically,
since its definition, the IEEE 1516 Standard has been criticized about its struc-
ture and its effective ability to manage really complex and dynamic models [6].
By analyzing the existing RTI implementations, to the best of our knowledge, few
currently available middleware solutions have been designed with some emphasis
on the adaptive exploitation of the communication infrastructure heterogeneity
which may be characterizing the distributed simulation-execution scenario. More
specifically, the Georgia-tech RTI-kit [21] implementation has been realized by
introducing some elasticity and optimization in the exploitation of the shared
memory execution-system architecture, whereas many other implementations
still rely on UDP or TCP socket-based interprocess communication even on a
single execution unit. It is worth noting that rare implementations provided the
source code to users, allowing them to configure the middleware on the basis of
the user needs and execution-system architecture.

The support for heterogeneous communication services and architectures
should be considered as a design principle in the implementation of a distributed

632 Luciano Bononi et al.

simulation middleware. Moreover, the adaptive optimization and management of
the middleware communication layer realized over heterogeneous network archi-
tectures, technologies and services should be considered both in the initialization
phase, and at runtime, in a distributed simulation process. Our ARTÌS imple-
mentation aims to be Open Source, and to provide an elastic, easy to configure
adaptation of the communication layer to the execution system.

3 The ARTÌS Middleware

The HLA implementation criticisms and the lack of Open Source implementa-
tions are the main motivations behind the design and implementation of ARTÌS
(Advanced RTI System). The main purpose of ARTÌS is the efficient support of
complex simulations in a parallel or distributed environment.

The ARTÌS implementation follows a component-based design, that should
result in a quite extendible middleware. The solutions proposed for time manage-
ment and synchronization in distributed simulations have been widely analyzed
and discussed. Currently, ARTÌS supports the conservative time management
based on both the time-stepped approach, and the Chandy-Misra-Bryant algo-
rithm. In the near future we have planned to extend ARTÌS to support optimistic
time management algorithms. The initial choice to support the conservative ap-
proach was a speculation on the highly unpredictable characteristics of our target
models of interest [2], which would have led to frequent rollbacks. Anyway, we
plan to investigate this assumption, and compare the optimistic and conservative
approaches as a future work.

In ARTÌS, design optimizations have been applied to adapt adequate proto-
cols for synchronization and communication in Local Area Network (LAN) or
Shared Memory (SHM) multiprocessor architectures. In our vision the communi-
cation and synchronization middleware should be adaptive and user-transparent
about all optimizations required to improve performances. The presence of a
shared memory for the communication among parallel or distributed Logical
Processes (LPs) offers the advantage of low latency, and reliable communication
mechanism. Interactions are modeled as read and write operations performed in
shared memory, within the address space of logical processes. A memory access
is faster than a network communication, but the shared memory itself is not
sufficient to alleviate the distributed communication problem. To take advan-
tage of the shared memory architecture, concurrent accesses to memory require
strict synchronization and mutual exclusion, together with deadlock avoidance
and distributed control.

Figure 1 shows the structure of the ARTÌS middleware. ARTÌS is composed
by a set of logical modules organized in a stack-based architecture. The commu-
nication layer is located at the bottom of the middleware architecture, and it is
composed by a set of different communication modules. The ARTÌS middleware
is able of adaptively select the best interaction module with respect to the dy-
namic allocation of Logical Processes (LPs) in the execution environment. The
current scheme adopts an incremental straightforward policy: given a set of LPs

ARTÌS: A Parallel and Distributed Simulation Middleware 633

DDM Time
Man.

Federation
Man.

Declaration
Man.

Object
Man.

Ownership
Man.

TCP/IP

Introspection

Performance

Logging

Migration

Layer

RTI Core

API

User Simulation Level

C/C++ TCP/IP

Unibo API

HLA
IEEE 1516 Gaming API

Memory
Shared MulticastR−UDPCommunication

Real−Time

Fig. 1. The ARTÌS modules’ structure and layered architecture

on the same physical host, such processes always communicate and synchronize
via shared memory. To implement these services we have designed, implemented
and tested many different solutions. The first implementation was based on Inter
Process Communication (IPC) semaphores and locks. This solution was immedi-
ately rejected both for performance reasons (semaphore and locks introduce not
negligible latency), and for scalability reasons (since the number of semaphores
that could be instantiated in a system is limited and statically controlled in the
operating system kernel). Among other possible solutions (e.g., we also consid-
ered busy-waiting) the current ARTÌS synchronization module works with “wait
on signals” and a limited set of temporized spin-locks. This solution has demon-
strated very low latency and limited CPU overhead, and it is really noteworthy
for good performances obtained in multi-CPU systems, good scalability and also
because it does not require any reconfiguration at the operating system kernel
level.

In ARTÌS, two or more LPs located on different hosts (i.e., no shared mem-
ory available), on the same local area network segment, communicate by using
a light Reliable-UDP (R-UDP) transport protocol over the IP protocol. On-
going activity is evaluating the use of raw sockets for R-UDP data segments
directly encapsulated in MAC Ethernet frames (i.e., bypassing the IP layer).
The drawback of this solution is that it could be adopted only within a common
LAN segment technology. Two or more LPs located on Internet hosts rely on
standard TCP/IP connections. Ongoing activity at this level is performed by
considering the exploitation of reliable multicast-IP solutions.

The ARTÌS runtime (RTI) core is on the top of the communication layer.
It is composed by a set of management modules, whose structure and roles
have been inherited by a typical HLA-based simulation middleware, compliant
with the IEEE 1516 Standard. The modules currently being under the imple-

634 Luciano Bononi et al.

mentation phase are: the Data Distribution Management (DDM) in charge of
managing the dynamic subscription/distribution of event and data update mes-
sages, the Time Management module currently implementing the conservative,
time-stepped distributed time management, the Federation Management, Decla-
ration Management, Object Management and Ownership Management modules
in charge of administrating all the remaining management issues accordingly
with the standard rules and APIs.

The ARTÌS runtime core is bound to the user simulation layer by modular
sets of application programming interfaces (APIs). Each API group was included
in order to allow a full integration and compliance of many distributed model
components with the ARTÌS middleware. The Standard API is implemented as
the HLA IEEE 1516 interface: this will allow the integration of IEEE 1516 com-
pliant models to the ARTÌS framework. Only a subset of the full Standard API
is currently implemented in ARTÌS. The new set of APIs of ARTÌS is called the
University of Bologna APIs (Unibo APIs). These APIs are currently designed
and implemented to offer a simpler access to distributed simulation services than
the Standard APIs. This would make easier and simpler for the modelers to cre-
ate and instantiate a distributed simulation with ARTÌS, than with the Standard
APIs. The programming handles of the Unibo APIs are currently provided for
C/C++ language code. We planned also to include in ARTÌS an API set specific
for Internet Gaming applications, whose design is still in preliminary phase.

Additional orthogonal modules are planned to be dedicated to other spe-
cific features, oriented to the adaptive runtime management of synchronization
and communication overheads. As an example, a real-time introspection mech-
anism would be devoted to offer an internal representation of the middleware
state while the simulation is running. Logging and Performance modules would
support the user simulation with online traces, statistics and runtime data anal-
ysis. Previous research works shown that more efficient simulation of dynamic
models can be obtained by introducing additional software components imple-
menting distributed model entities migration [2]. The Migration module should
be orthogonal in the middleware, with the target to reduce runtime communi-
cation overheads accordingly with the coordination supported with other peer
modules. To this end, future work is planned to include in ARTÌS a dynamic
model-entity migration support that we conceived and illustrated, as a proto-
type, for the HLA-based middleware on [2]. By defining a dynamic allocation
of simulated model entities over different physical execution units we obtained
speed-up improvements (and communication overheads reduction) that could be
further optimized in ARTÌS, when supported by opportune coordination of the
migration modules.

4 ARTÌS Test and Validation

The verification and validation test of the preliminary implementation of the
ARTÌS framework has been executed over a set of distributed and heterogeneous
model components implemented in C code. The tests performed were based on

ARTÌS: A Parallel and Distributed Simulation Middleware 635

models of wireless networks’ components. The wireless ad hoc networks mod-
els were mobile hosts with IEEE 802.11 network interfaces, and static sensor
networks based on small-communication-range components. We are also realiz-
ing models and experiments to test distributed protocols over large, scale-free
networks. All the simulation experiments performed were realized with several
thousands model components, and with many logical processes distributed over
local (i.e., shared memory) and distributed physical execution units connected
by a Fast-Ethernet (100 Mbps) LAN segment. The set of execution units we used
in the tests is composed by: several dual Xeon 2.8 GhZ with 2GB RAM, and
one Quadral Xeon 1.4 GhZ with 2 GB RAM, all with Debian GNU/Linux OS
with kernel version 2.6. All the tests performed shown the ARTÌS framework was
correctly implemented, by supporting a scalable number of model components in
a conservative distributed simulation. The tests of TCP/IP (i.e., Internet-like)
communication scenario were executed over our department’s LAN network. The
performance comparison of the shared memory, R-UDP and TCP/IP implemen-
tation is beyond the scope of this paper and will be done as a future work.
Anyway, it was clearly indicated by preliminary results that orders of magni-
tude differences in simulation performances can be obtained under the different
approaches, and this would confirm that adaptive and runtime management re-
alized by the ARTÌS framework to exploit models’ and system dynamics, would
result in relevant simulation performance gain and overheads reduction.

5 Conclusions and Future Work

In this paper we illustrated the motivation and preliminary design and imple-
mentation issues of a new distributed simulation middleware named Advanced
RTI System (ARTÌS). The aim of the ARTÌS middleware is to support parallel
and distributed simulations of complex systems characterized by heterogeneous
and distributed model components. The ARTÌS design is oriented to support the
model components heterogeneity, distribution and reuse, and to reduce the com-
munication overheads, by increasing the simulation performances, scalability and
speedup, in parallel and distributed simulation scenarios. The ARTÌS design and
architecture was presented to illustrate how the reduction of the communication
cost and the exploitation of heterogeneous execution platforms could be con-
sidered in the design and implementation of parallel and distributed simulation
middlewares based on the IEEE 1516 (HLA) Standard. Future work includes the
complete implementation of the ARTÌS APIs and management modules, the full
investigation of the ARTÌS performance and scalability, the implementation of
model component migration and dynamic adaptation primitives, the design of
new model components libraries and the distributed Gaming APIs.

636 Luciano Bononi et al.

References

1. Bagrodia, R., Meyer, R., Takai, M, Chen, Y., Zeng, Z., Martin, J., Song, H.Y.:
Parsec: A Parallel Simulation Environment for Complex Systems. Computer 31

(1998) 77-85
2. Bononi, L., D’Angelo, G., Donatiello, L.: HLA-Based Adaptive Distributed Sim-

ulation of Wireless Mobile Systems. In: Proceedings of the 17th Workshop on
Parallel and Distributed Simulation (PADS 2003), San Diego, California. IEEE
Computer Society (2003) 40–49

3. Boukerche, A., Fabbri, A.: Partitioning Parallel Simulation of Wireless Networks.
In: Joines, J.A., Barton, R.R., Kang, K., Fishwick, P.A. (eds.): Proceedings of the
32nd Conference on Winter Simulation (WSC 2000), Orlando, Florida. Society for
Computer Simulation International (2000) 1449-1457

4. Dahmann J.S., Fujimoto R.M., Weatherly, R.M.: The Department of Defense
High Level Architecture. In: Andradóttir, S., Healy, K.J., Withers, D.H., Nelson,
B.L. (eds.): Proceedings of the 29th Conference on Winter Simulation (WSC’97),
Atlanta, Georgia. ACM (1997) 142–149

5. Dahmann, J.S., Fujimoto, R.M., Weatherly R. M.: The DoD High Level Archi-
tecture: An Update. In: Medeiros, D.J., Watson, E.F., Carson, J.S., Manivannan,
M.S. (eds.): Proceedings of the 30th Conference on Winter Simulation (WSC’98),
Washington, D.C. IEEE Computer Society (1998) 797–804

6. Davis, W.J., Moeller, G.L.: The High Level Architecture: Is There a Better Way?
In: Farrington, P.A., Nembhard, H.B., Sturrock, D.T., Evans, G.W. (eds.): Pro-
ceedings of the 31st Conference on Winter Simulation (WSC’99), Phoenix, Arizona,
Vol. 2. ACM (1999) 1595–1601

7. Deelman, E., Szymanski, B.K.: Dynamic Load Balancing in Parallel Discrete Event
Simulation for Spatially Explicit Problems. In: Proceedings of the 12th Workshop
on Parallel and Distributed Simulation (PADS’98), Banff, Alberta. IEEE Com-
puter Society (1998) 46–53

8. Ferscha, A.: Parallel and Distributed Simulation of Discrete Event Systems. In:
Zomaya, A.Y.H. (ed.): Handbook of Parallel and Distributed Computing. McGraw-
Hill, New York (1996)

9. Fujimoto, R.M.: Parallel and Distributed Simulation Systems. John Wiley & Sons,
New York (2000)

10. Gan, B.P., Low, Y.H., Jain, S., Turner, S.J., Cai, W., Hsu, W.J., Huang, S.Y.:
Load Balancing for Conservative Simulation on Shared Memory Multiprocessor
Systems. In: Proceedings of the 14th Workshop on Parallel and Distributed Sim-
ulation (PADS 2000), Bologna, Italy. IEEE Computer Society (2000) 139–146

11. IEEE Std 1516-2000: IEEE Standard for Modeling and Simulation (M&S) High
Level architecture (HLA) - Framework and Rules, - Federate Interface Specifica-
tion, - Object Model Template (OMT) Specification, - IEEE Recommended Prac-
tice for High Level Architecture (HLA) Federation Development and Execution
Process (FEDEP). (2000)

12. Kelly, O.E., Lai, J., Mandayam, N.B., Ogielski, A.T., Panchal, J., Yates, R.D.:
Scalable Parallel Simulations of Wireless Networks with WiPPET: Modeling of
Radio Propagation, Mobility and Protocols. Mobile Networks and Applications 5

(2000) 199–208
13. Liu, W.W., Chiang, C.-C., Wu, H.-K., Jha, V., Gerla, M., Bagrodia, R.L.: Parallel

Simulation Environment for Mobile Wireless Networks. In: Proceedings of the 28th
Conference on Winter Simulation (WSC’96), Coronado, California. ACM (1996)
605–612

ARTÌS: A Parallel and Distributed Simulation Middleware 637

14. NS-2: The Network Simulator. (2004) http://www.isi.edu/nsman/ns/

15. OMNeT++: Discrete Event Simulation Environment. (2004)
http://www.omnetpp.org

16. Open SystemC Initiative. (2004) http://www.systemc.org

17. OpNet Simulation Platform. (2004) http://www.opnet.com

18. PERF Project. Performance Evaluation of Complex Systems: Techniques, Method-
ologies and Tools, Italian MIUR-FIRB. (2002) http://www.perf.it

19. Rao, D.M., Wilsey, P.A.: Parallel Co-simulation of Conventional and Active Net-
works. In: Proceedings of the 8th International Symposium on Modeling, Analysis
and Simulation of Computer and Telecommunication Systems (MASCOTS 2000),
San Francisco, California. IEEE Computer Society (2000) 291–298

20. Riley, G.F., Fujimoto, R.M., Ammar, M.H.: A Generic Framework for Paralleliza-
tion of Network Simulations. In: Proceedings of the 7th International Symposium
on Modeling, Analysis and Simulation of Computer and Telecommunication Sys-
tems (MASCOTS’99), College Park, Maryland. IEEE Computer Society (1999)
128–137

21. RTI-Kit. Parallel and Distributed Simulation, Georgia Institute of Technology Re-
search. (2003) http://www.cc.gatech.edu/computing/pads/software.html

22. Short, J., Bagrodia, R., Kleinrock, L.: Mobile Wireless Network System Simulation.
Wireless Networks 1 (1995) 451–467

23. Som, T.K., Sargent, R.G.: Model Structure and Load Balancing in Optimistic
Parallel Discrete Event Simulation. In: Proceedings of the 14th Workshop on
Parallel and Distributed Simulation (PADS 2000), Bologna, Italy. IEEE Computer
Society (2000) 147–154

24. Vee, V.-Y., Hsu, W.-J.: Locality-Preserving Load-Balancing Mechanisms for Syn-
chronous Simulations on Shared-Memory Multiprocessors. In: Proceedings of the
14th Workshop on Parallel and Distributed Simulation (PADS 2000), Bologna,
Italy. IEEE Computer Society (2000) 131–138

25. Zeng, X., Bagrodia, R., Gerla, M.: GloMoSim: A Library for Parallel Simulation of
Large-Scale Wireless Networks. In: Proceedings of the 12th Workshop on Parallel
and Distributed Simulation (PADS’98), Banff, Canada. IEEE Computer Society
(1998) 154–161

http://www.isi.edu/nsman/ns/
http://www.omnetpp.org
http://www.systemc.org
http://www.opnet.com
http://www.perf.it
http://www.cc.gatech.edu/computing/pads/software.html

	Introduction
	Motivation and Preliminary Discussion
	The ARTIS Middleware
	ARTIS Test and Validation
	Conclusions and Future Work

