
Performance Analysis of a Parallel and Distributed 
Simulation Framework for Large Scale Wireless Systems 

 
Luciano Bononi Michele Bracuto Gabriele D’Angelo Lorenzo Donatiello

 
Dipartimento di Scienze dell’Informazione, Università degli Studi di Bologna,  

Mura Anteo Zamboni 7, 40126, Bologna, Italy 
 

{bononi, bracuto, gdangelo, donat}@cs.unibo.it 
 
Abstract  
The simulation of ad hoc and sensor networks often requires a 
large amount of computation, memory and time to obtain 
significant results. The parallel and distributed simulation 
approach can be a valuable solution to reduce the computation 
time, and to support model components’ modularity and reuse. 
In this work we perform a testbed evaluation of a new 
middleware for the simulation of large scale wireless systems. 
The proposed middleware has been designed to adapt and to 
scale over a heterogeneous distributed execution infrastructure. 
To realize a testbed evaluation of the considered framework we 
implemented and investigated a set of wireless systems’ models. 
Specifically, we identified two classes of widely investigated 
wireless models: mobile ad hoc, and static sensor networks. In 
this work we present the performances of the simulation 
framework, with respect to the heterogeneous set of execution 
architectures, and the modeled systems’ characteristics. Results 
demonstrate that the framework leads to increased model 
scalability and speed-up, by transparently adapting and 
managing at runtime the communication and synchronization 
overheads, and the load balancing. 

Categories and Subject Descriptors 
I.6.8 [Simulation and Modeling]: Types of Simulation – discrete 
event,  distributed, parallel 

General Terms 
Performance, Design, Experimentation 

Keywords 
Parallel and distributed simulation, wireless systems, 
middleware design, scalability, overheads reduction 

1. INTRODUCTION 
     The research in the field of wireless systems, protocols and 
architectures has been characterized by the need to investigate 
even more complex and detailed models of wide, scalable and 

                                                 
Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. To copy otherwise, or 
republish, to post on servers or to redistribute to lists, requires prior specific 
permission and/or a fee. 
MSWiM’04, October 4–6, 2004, Venezia, Italy. 
Copyright 2004 ACM 1-58113-953-5/04/0010...$5.00. 

integrated systems. Many standards and system architectures for 
wireless systems have been proposed, and are currently being 
deployed and developed, while other solutions are currently 
under the design and analysis phases for future deployment. 
Wireless networks’ architectures and wireless sensor systems 
are currently under analysis to obtain insights and guidelines 
governing many relevant design issues: as an example, system 
architecture and management choices, protocols’ design, 
dynamic self-configuration and adaptation to system dynamics, 
systems and protocols’ interoperability and co-existence, system 
scalability and system fault-tolerance and lifetime. To obtain 
valuable insights of the investigated indices, researchers would 
require intuitive, accurate and fine-grained methodologies and 
tools for the analysis. Because of mathematical untractability 
and the model complexity, simulation-based investigation of 
wireless systems is often preferred to numerical and analytical 
resolution methods [18, 28, 33, 34, 36]. Simulation makes more 
practical the modeling and investigation of complex and 
dynamic scenarios, often characterized by multiple correlated 
factors, “memory effects” of the system states, and dynamic 
causal effects. Under such conditions, a simulation model would 
allow a level of detail that exceeds the detail level that could be 
obtained in most tractable mathematical models. A modular 
simulation modeling makes it possible the model components’ 
reuse and composition, and works in favour of a correct system 
design, together with the possibility of a preliminary functional-
test and interoperability analysis that would result in a fast 
system deployment.  

On the other hand, two problems appear to limit the adoption of 
simulation techniques for the analysis of complex systems: i) the 
limitation of affordable-cost simulation execution architectures 
(mainly memory and computational power) [28, 33, 34], and ii) 
the scarce possibility of model components’ reuse and model 
composition among heterogeneous simulation models and tools. 
As a consequence, the research for tools and new methodologies 
for standard- and module-based modeling and simulation of 
large-scale and complex wireless networks has received a great 
attention by the research community, and has led to some 
interesting results [1, 2, 5, 7, 15, 16, 17, 19, 20, 22, 27, 29, 30, 
35, 38]. Currently, it is widely recognized that many of the most 
adopted tools for simulation of wireless systems (e.g. Network 
Simulator, ns2 [37]) suffer the memory limitation of the 
execution architecture (which translates in a limitation of the 
model complexity and scalability). Also, they suffer the great 
computation time required to complete the simulation processes 
[26]. The fact that wireless networks models may be complex 
and may include a potentially huge number of simulated and 

52



dynamically interacting components would represent an 
amplifier of the modeling limitations due to memory constraints 
of current tools and simulation architectures. Specifically, under 
the computation viewpoint, the simulation of wireless systems’ 
models may require a long time, due to the execution of 
complex behaviors and state updates required on behalf of many 
model components. Many different model factors may introduce 
additional computation requirements for implementing detailed 
model components behaviors: e.g. mobility patterns and 
topology changes, layered communication protocols, resource 
sharing, interference effects, among others. As a result, large 
scale and complex simulation models are often unpractical to 
simulate on a single-processor execution unit, because of huge 
memory requirements and large amount of time required to 
complete the simulation runs [28, 33, 34]. Parallel and 
distributed models and architectures may be a viable alternative 
to reduce memory bottlenecks through distributed memory 
hierarchies, and to obtain simulation speed-up thanks to the 
parallel execution of computation tasks [1, 6, 7, 13, 14, 19, 20, 
21,22, 31, 32, 34, 37, 40]. A parallel and distributed simulation 
is realized by a set of distributed execution units, where 
concurrent executions of parallel processes are controlled and 
synchronized basically via message-passing primitives. Such 
primitives are used to distribute event-messages and to 
implement distributed time management. Many distributed 
simulation paradigms can be adopted to realize a parallel and 
distributed simulation, whose illustration is out of the scope of 
this paper [13, 14]. 

Recently, a new standard has been defined, named IEEE 1516 
Standard for parallel and distributed modeling and simulation 
[17]. The standard defines rules and interfaces allowing for 
heterogeneous model components’ interoperability in parallel 
and distributed simulations. Model components (formally 
known as federates) are executed as Logical Processes (LPs) 
[17]. The standard, often (and improperly) referred to as High 
Level Architecture (HLA), defines a set of rules and service 
interfaces that can be implemented by a RunTime (RTI) 
middleware. The HLA rules must be followed, and the RTI 
services can be exploited, by every model component in the 
simulation [8, 12, 17].  The HLA implementations available so 
far have gained a good interest and diffusion, but have also been 
subject to some criticisms [8, 12, 39, 3, 4, 10].  The 
investigation of new features and services, and the lack of Open 
Source runtime implementations are the main motivations 
behind the design and implementation of the ARTÌS (Advanced 
RTI System) middleware, which we illustrate and test in this 
paper. 

     ARTÌS is a new parallel and distributed simulation 
middleware, whose aim is to support the simulation of complex, 
massively populated systems, providing a simple and 
straightforward set of services available to the simulation 
modelers. As many other middlewares,  ARTÌS is oriented to 
support model heterogeneity, distribution and reuse. On the 
other hand, the ARTÌS design was focused on the exploitation 
of assumptions and characteristics of both the execution system 
architecture, and the simulation model, to increase the 
performances in parallel and distributed simulations [4]. 

     The main bottleneck arising in a distributed simulation 
framework is given by the communication overheads to realize 
the event-message distribution and synchronization services 
between a set of distributed model entities. The communication 

overhead due to the message passing required for the parallel 
and distributed simulation could nullify all the performance gain 
obtained by parallel executions. The ARTÌS framework is 
designed to realize the dynamic adaptation of the interprocess 
communication layer to the heterogeneous communication 
support offered by possible different simulation-execution 
architectures [4]. Specifically, we oriented the ARTÌS design 
towards the adaptive evaluation of the communication 
bottlenecks and support for multiple communication 
infrastructures and services, from shared memory to Internet-
based communication [4]. ARTÌS has been also integrated in a 
framework with another middleware, named Generic Adaptive 
Interaction Architecture (GAIA). Basically, GAIA implements a 
simple model components’ migration mechanism, preliminarly 
proposed on the top of HLA-based distributed simulations [3]. 
The HLA standard and existing RTIs do not define component 
migration facilities, and preliminary research activity was made 
on this topic [24, 25]. GAIA includes a heuristic migration 
policy, whose aim is to dynamically partition and allocate the 
interacting model components over many Logical Processes 
(LPs), respectively executed over a set of multiple, distributed 
execution units. The composition of ARTÌS and GAIA realizes 
a framework for parallel and distributed simulation, 
characterized by adaptive reactions to dynamic systems’ 
behavior, and oriented to the communication-overhead 
reduction. In this work, the prototype implementation of the 
ARTÌS and GAIA framework is outlined.  A set of testbed-
evaluation results are presented to express the potential of 
ARTÌS with and without GAIA over heterogeneous execution 
architectures, and for two classes of wireless systems’ models: 
wireless mobile ad hoc networks and wireless sensor networks. 

     The paper structure is the following: in section 2 we outline 
the guidelines and motivations for the modeling and 
implementation of distributed simulation of wireless systems. In 
section 3 the ARTÌS middleware and the GAIA framework are 
introduced. In section 4, two wireless system's models are 
described. In section 5 we present a set of simulation results. In 
section 6 we summarize our conclusions and future work. 

 
2.  DISTRIBUTED SIMULATION OF 
WIRELESS SYSTEMS 
     Wireless systems are highly dynamic systems where the 
interactions are subject to fast changes driven by the system 
evolution. Given a wireless system model, it is quite natural for 
modelers to implement and recycle a set of model components, 
each one realized by a composition of software modules, to 
obtain the global system model. Every autonomous model 
component (e.g. a wireless node or sensor) is then required to 
mimic the interactions (i.e. the causal effects of events) with all 
the neighbor components in the modeled scenario. Two inherent 
characteristics of wireless systems play an important role in the 
modeling and simulation viewpoint: i) the hosts’ mobility and ii) 
the open broadcast nature of the wireless transmissions. 

As an example, topology changes due to simulated hosts’ 
mobility map on causality effects in the “areas of influence” of 
each mobile device. This may result in dynamically shaped 
causality-domains, which map on the interaction-scheme of the 
distributed model components. Intuitively, given two or more 
neighbor-hosts sharing the wireless medium, the causal effect of 
a signal-interference event due to the “open broadcast” nature of 

53



the wireless transmissions could result in a chain of local-state 
events up to the high protocols’ layers [36]. In our modeling 
approach, we define a model entity as the data structure defined 
to model a Simulated Mobile Host (SMH).  

A high degree of causality in the simulation of the wireless 
hosts’ communication is driven by the local-topology 
interaction (i.e. transmissions) between neighbor hosts [18, 36]. 
Under the modeling and simulation viewpoint, if a SMH 
changes its position, it will eventually interact with a new 
community of neighbor hosts. A certain degree of time-locality 
among neighbors’ communications can be considered an 
acceptable assumption in many wireless system models, 
depending on the communication load and the mobility model 
assumptions. The system and model dynamics can be influenced 
by motion model and speed, and also by the SMHs density. 

To realize a correct evolution in a parallel or distributed 
simulation, under the event-causality viewpoint, every model 
components’ interaction should be notified as an event-message 
to all the causally dependent model components. In a distributed 
simulation, this task is usually managed by a runtime event-
message distribution mechanism.  Complex systems with 
detailed and fine-grained simulation models can be considered 
communication-intensive under the distributed simulation 
approach. As a result, interprocess communication may become 
the bottleneck of the distributed simulation paradigm. The way 
interprocess communication can be supported in distributed 
systems would mainly depend on the execution units and on the 
simulation system resources, architectures and characteristics. 
As an example, message passing communication can be 
performed efficiently over shared memory architectures, while it 
would require medium/high communication latencies over local 
and wide area network communication services.  

The physical clustering of interacting model components on a 
shared memory architecture could result in the advantage to 
exploit the most efficient message passing implementation. 
Unfortunately, in wireless mobile networks any optimal, static 
clustering and allocation of model entities, based on the current 
component-interaction scheme, will become immediately 
suboptimal, due to the dynamics of the model interactions (e.g. 
SMH mobility). The approach used in currently available 
implementations of parallel and distributed simulation 
frameworks is to passively detect the model component 
interactions, by adapting the event message distribution 
accordingly. No background optimization is based on the 
heterogeneous characteristics of any available communication 
infrastructure. This observation will be a motivation for the 
design of our simulation framework. 

The event-message distribution of a distributed simulation 
requires a dynamic definition of publishing/subscribing lists, or 
the implementation of a complete state-sharing information 
system. On the other hand, a dynamic approach for the event-
distribution and state-information-updates (e.g. dynamic lists 
and subscription groups) would lead to additional 
communication and management overheads. In some scenarios, 
the communication cost of list-updates or fine-grained events’ 
communication between a dynamically variable set of 
components, could make attractive a complementary approach. 
As an example, when the system communication infrastructure 
is characterized by significant performance asymmetry (e.g. 
shared memory vs. LAN communication), like in networked 
clusters of PCs, the migration cost needed to dynamically 

cluster the set of interacting components over a single Physical 
Execution Unit (PEU) could become attractive. This would be 
even more attractive if the following three assumptions could be 
satisfied: i) components’ migration could be implemented 
incrementally as a simple data-structure (i.e. state) transfer, ii) 
the component state would be comparable with the amount of 
data exchanged for interactions, and iii) the object’s interaction 
scheme would be maintained for a significant time (i.e. time-
locality).  

 
2.1. The Simulation Execution Testbed 
Our simulation testbed consists of a distributed, discrete-event 
simulation of model components. Model components are 
executed as logical processes over a set of physical execution 
units (PEUs), connected by a physical LAN network.  

The execution architecture for our experiments is realized by 3 
PEUs each one equipped by Dual Xeon Pentium IV 2800 Mhz, 
with 3 GB RAM, and one PEU equipped by Quadral Xeon 
Pentium IV 1500 Mhz, with 2GB RAM, all connected by a Fast 
Ethernet (100 Mb/s) LAN, and all equipped with Debian 
GNU/Linux OS with kernel version 2.6. 

Our design approach is mainly focused on the adaptive 
communication-reduction between the PEUs where Logical 
Processes  (LP) are executed. Every LP is statically allocated 
and executed on a single PEU. Specifically, one single LP 
cannot be split over two or more PEUs, more LPs can be 
executed over a single PEU, and LPs cannot be migrated 
between PEUs. 

Every LP is managed by a runtime simulation core (ARTÌS) as a 
single simulation component. On the other hand, a single LP is 
implicitly formed by a set of threads, each one managing and 
updating the state (i.e. local data structures) of a set of 
Simulated Mobile Hosts (SMHs). A communication between 
wireless hosts can be modeled as a set of interactions (i.e. 
message-events) between any couple of adjacent SMHs. Since a 
wireless communication must be always modeled as a broadcast 
within a limited local transmission range, this requires that each 
SMH within a variable range would be notified with the 
transmission-related event-messages. Each event would result in 
a multiple set of one-to-one interactions (i.e. event messages) 
among local SMHs. If the sender SMH and its neighbors belong 
to the same LP (i.e. they are executed on the same PEU), or if 
they belong to different LPs implemented over the same PEU, 
then their interactions can be considered local (e.g. shared 
memory communication) and do not involve any physical 
network communication. On the other hand, every interaction 
involving participants implemented over foreign LPs (e.g. LPs 
implemented over different PEUs) may require time-expensive 
physical network communication. By reducing the physical 
network communication we can reduce the synchronization 
delays. By clustering neighbor SMHs within the same LP, or 
within the LPs executed over the same PEU, we close the causal 
interactions and system communication within the PEU where 
the interacting LPs (and their respective SMHs) are executed. In 
addition, clustered interacting SMHs would limit interactions 
with the management layers of the ARTÌS middleware, by 
further reducing the computation and communication overheads. 
To sum up, by limiting the network communication in favour of 
the local (shared memory) communication, the wall clock time 
required by the simulation runtime to achieve full 

54



synchronization would be reduced. This would make it possible 
to obtain a simulation speedup. 

A static approach could be adopted to optimally distribute the 
SMHs within the LPs in the simulation initialization phase. The 
optimal solution for allocation is hard to find and could be 
defined in many ways, depending on the targeted overheads' 
reduction. Typically, the optimality is defined with respect to 
latency (to reduce the physical network communication cost) or 
computation (to obtain an optimally balanced execution 
parallelism). Anyway, this should be explicity performed offline 
by the modeler, on the basis of the modeling assumptions. 
Moreover, as it will be demonstrated in the final results, the 
model dynamics (e.g. the SMH mobility) would make the 
initially optimal distribution less effective after few simulation 
steps. This result may translate in a performance degradation for 
the simulation speedup, mainly due to the increasing cost of 
communication and synchronization required between 
distributed model components (logical processes). In our 
approach the optimization is dynamically performed at runtime, 
by the proposed simulation middleware, by  migrating the 
SMHs between LPs. In this way, the modeler is relieved by the 
optimization task, and the system converges towards a balanced, 
tuneable and pseudo-optimal model components’ distribution 
driven by the model interaction scheme.  If we assume a time-
locality in the interaction between neighbor hosts, it could be 
convenient to migrate the foreign SMH to the  LP (and to the 
PEU) where its new neighbors are located, by reducing in this 
way the cost of successive interactions. This assumption is 
typically verified in MANETs, e.g. most routing protocols are 
based on “proximity” concept to decide the routing path of 
communications, and such communications usually last for a 
significant time, following a bidirectional session-based scheme. 
The effect of the time-locality of the causality effect inside each 
logical process will be investigated in the final section, by 
varying the SMH mobility speed. 

 
3. THE DISTRIBUTED SIMULATION 
FRAMEWORK 
3.1. The Advanced RTI System (ARTÌS) 
     The main purpose of ARTÌS is the efficient support of 
complex simulations in a parallel and distributed environment.  

The ARTÌS implementation [4] follows a component-based 
design, that results in easily extendable middleware (see figure 
1). The solutions proposed for time management and  
synchronization in distributed simulations have been widely 
analyzed and discussed in the design phase. Currently, ARTÌS 
supports the conservative time management based on both the 
time-stepped approach, and the Chandy-Misra-Bryant 
algorithm. We are working on the extension of ARTÌS to 
support optimistic time management algorithms. The initial 
choice to support the conservative approach was a speculation 
on the highly unpredictable characteristics of wireless system 
models [3], which may result in frequent rollbacks under 
optimistic simulation schemes. In ARTÌS, many design 
optimizations have been applied to the communication layer, to 
obtain adequate protocols for synchronization and 
communication in Local Area Network (LAN) or Shared 
Memory (SHM) multiprocessor architectures (see figure 1). In 
our vision the communication and synchronization middleware 
should be adaptive and user-transparent about all the 

optimizations required to improve performances. The current 
scheme adopts an incremental straightforward policy: given a 
set of LPs on the same physical host, such processes always 
communicate and synchronize via read and write operations, 
performed within the address space of LPs, in the shared 
memory. To implement these services we have designed, 
implemented and tested many different solutions, based on Inter 
Process Communication (IPC) semaphores and locks, busy-
waiting, and "wait on signals" with a limited set of temporized 
spin-locks. The latter solution has demonstrated very low 
latency and limited CPU overhead, good performances obtained 
in multi-CPU systems, good scalability, and no need to 
reconfigure the operating system kernel level. 

Two or more LPs located on different hosts (i.e. no shared 
memory available), on the same local area network segment, 
communicate by using a light Reliable-UDP (R-UDP) transport 
protocol over the IP protocol. Ongoing activity is evaluating the 
use of raw sockets for R-UDP data segments directly 
encapsulated in MAC Ethernet frames (i.e. bypassing the IP 
layer). Two or more LPs located on Internet hosts rely on 
standard TCP/IP connections. 

 

DDM Time

Man.

Federation

Man.

Declaration

Man.

Object

Man.

Ownership

Man.

TCP/IP

Introspection

Performance

Logging

Layer

RTI Core

API

User  Simulation   Level

C/C++ TCP/IP

Unibo API

HLA
IEEE 1516 Gaming API

Memory
Shared MulticastR−UDPCommunication

Real−Time

GAIA

 
 

Figure 1: The ARTÌS framework modules and architecture 

 
 

3.2. The Generic Adaptive Interaction 
Architecture (GAIA) 
     The PDES simulator built to obtain an experimental testbed 
of our proposal is based on a distributed architecture made by a 
set of logical processes glued together by  the ARTÌS 
middleware. In our preliminary design [3] we adopted the High 
Level Architecture (HLA) DMSO (Department of Military 
Simulation Office, US Department of Defense) implementation 
RTI-1.3NGv3.2 as the basis for our work.  On top of the HLA 
RTI we built a middleware extension called Generic Adaptive 
Interaction Architecture (GAIA). GAIA provides the interaction 
to the simulation core, the location and distribution data 
management, the random number generator, tracefile-logging 
and other simulation facilities. 

     The target of GAIA is to provide migration and service APIs 
to the simulation developer. Because of the unavailability of 
DMSO RTI source-code, the GAIA facilities were initially 
provided as an external middleware on top of the DMSO RTI 
[3]. The development of ARTÌS middleware has permitted to 

55



merge the GAIA framework within the runtime core, still 
reducing the runtime execution overheads (see figure 1). 

We implement SMH models as code with data structures to 
define and maintain the SMH state information. GAIA migrates 
the “data structure”, i.e. the state information of SMHs between 
LPs. This required to design and to implement a migration layer  
for the “state” of the SMH model entities between LPs. The 
ARTÌS runtime has been extended to execute static models and 
to exploit migration by means of a small set of Application 
Programming Interfaces (APIs) providing migration services for 
migration-enabled models.  

    To test our framework we implemented a time-stepped, 
conservative, parallel and distributed discrete-event simulation 
of two classes of models for mobile wireless systems.   

 

It is worth noting that the ARTÌS and GAIA implementation 
under test in this work are completely different than the 
implemented tools preliminary analyzed in [3]. By following the 
guidelines obtained in [3], the ARTÌS runtime has been 
designed and implemented as an alternative to HLA runtime, 
and the GAIA middleware has been completely reimplemented, 
with both the migration and the load-balancing heuristics 
completely redesigned. Moreover, the composition of GAIA 
with ARTÌS results in lower management overheads and greater 
speedup than the framework architecture described in [3]. 

 
4. WIRELESS SYSTEMS’ MODEL 
DEFINITION 
In the following we describe two classes of wireless systems’ 
models that we considered in our testbed evaluation of the 
ARTÌS and GAIA framework. The two classes of models have 
been selected i) because they represent two examples of widely 
studied systems and ii) because they capture most of the 
complementary characteristics of wireless simulation systems 
about mobility, communication load, management overheads, 
resource limitations. This will let us to obtain results about the 
optimization and speedup achieved by our simulation 
framework, based on the exploitation and adaptation to many 
variable model characteristics. 

 
4.1. The Mobile Ad Hoc Network’s Model 
      The definition of a mobile ad hoc network model is basically 
devoted to study the effect of hosts’ mobility and high 
communication loads assumptions under the modeling 
viewpoint. We assume a highly scalable number of simulated 
mobile hosts (SMHs), each one following a Random Mobility 
Motion model (RMM). This motion model is syntetic and far 
from reality, but the choice was driven by the unpredictable and 
uncorrelated mobility pattern of SMHs. This is the worst case 
analysis for our mechanism, because any heuristic definition 
cannot rely on any assumption about the motion correlation and 
predictability of SMHs. The only correlation effect we would 
exploit in our mechanism is given by the “time-locality” of 
communication sessions between neighbor-hosts. Given the 
framework definition, our feeling is that any other widely used 
motion model, like any restricted, correlated or Group Mobility 
model, would result in better results than the adopted RMM 
model, for any migration heuristic. The RMM model is defined 

by SMHs swinging between mobile and static epochs. At the 
beginning of each epoch, every SMH  decides to stay or to 
change its mobile or static status, by following a geometric 
distribution with parameter p=1/2. When entering a mobile 
state, new, uncorrelated and uniformly-distributed direction and 
speed  are randomly selected and maintained up to a static 
epoch. The cycle is repeated for the whole simulation run by 
every SMH. Sometimes we considered motion sub-models 
related to the motion speed, i.e. high speed (25 
spaceunits/timestep), and lower speed (10 spaceunits/timestep). 
To stress the migration scheme, we have also used an extreme 
sub-model with very high speed (100 spaceunits/timestep). 

 
Figure 2: a snapshot of a Mobile Ad Hoc Network with 3000 

SMHs dynamically allocated by GAIA over 3 PEUs. Dot 
colors define the PEU where the SMH is executed. 

 

     Space is modeled as a torus-shaped 2-D grid-topology, 
10.000x10.000 spaceunits, populated by a constant number of 
mobile SMHs. SMHs are randomly and uniformly distributed in 
the simulated area (see dots positions in figure 2). The torus 
space topology, indeed unrealistic, is commonly used by 
modelers to prevent non-uniform SMHs’ concentration in any 
area. This allows to evaluate the mechanism behavior in a worst 
case scenario, where the clustering of SMHs is not trivially 
determined by high concentration in small areas. We believe 
that these are stressing examples for our mechanisms, because 
they will lead to a high migration overhead, given the motion 
model defined. The simulated space is wide and open, without 
obstacles. The modeled communication between SMHs is a 
constant flow of ping messages (i.e. constant bit rate), 
transmitted by every SMH to all neighbors within a wireless 
communication range of 250 spaceunits. Again, this choice is 
stressing the migration mechanism under the mobility effects of 
continuously transmitting SMHs. In our proposal, since the 
SMH migration policy is evaluated on the basis of the local and 
remote interaction (i.e. communication), no communication 
translates in no migration needs, hence no additional 
communication, synchronization and migration overheads. The 
rate of ping messages is constant because it is the control 
parameter for communication: increasing/reducing the ping rate 

56



would be equivalent to change the interaction rate. We plan to 
extend this model with the real implementation of message 
flows, routing protocols and applications as a future work. 
Currently, the host model implements the Carrier Sense 
Multiple Access with Collision Avoidance (CSMA/CA) 
Medium Access Control protocol of the IEEE 802.11 
Distributed Coordination Function. Anyway, this model is not 
used in our investigation because we are only interested in 
modeling the basic interaction, at the physical layer, which is 
given by the event of a channel occupancy due to local ping 
messages among neighbor hosts. It is worth noting that 
additional local computation would be required by adopting 
more detailed and complete protocol stacks implementations 
over the SMH model entities, resulting in additional advantages 
of parallel execution. 

 
4.2. The Sensor Network Model 
The second model we considered in our testbed evaluation is 
based on a wireless sensor network system. In this model we are 
interested to test the model scalability, by showing results in a 
system with up to 40.000 sensors. The most important feature of 
this system with respect to the mobile ad hoc network, is given 
by the fact that sensors are static. They are randomly placed 
with uniform distribution in the simulated area (see figure 3).  

 
Figure 3: a snapshot of a wireless sensor network with 700 

sensors. Dot colors refer to sensor state: red=active, 
green=power saving, white=listening. 

 

For maintaining the protocol behavior and average connectivity, 
the area size is variable such that the sensor density is constant 
in all experiments (approximatively 1 sensor in 10x10 space 
units). The communication range of each sensor is 15 space 
units. Every sensor implements a “pressure variation” detector 
and sends broadcast alerts that are flooding towards a set of 
target detection points. To maximize the network lifetime, every 

sensor implements a power saving mechanism that adaptively 
manages the sensor state. A sensor can be active, listening and 
in power saving state. A new Medium Access Control scheme, 
whose definition is out of the scope of this paper is currently 
investigated by adopting the model defined. Under the modeling 
and simulation viewpoint this model is complete and provides 
detailed information about the system behavior, both for sensor 
network management, communication, resources’ utilization 
and network lifetime indices. 
 
5. EXPERIMENTAL RESULTS 
    In this section we present the results of some testbed 
simulation experiments executed to test the ARTÌS distributed 
simulation framework, and the GAIA middleware. The 
experiments have been performed over heterogeneous execution 
infrastructures and scenarios, and have involved two different 
classes of wireless systems models. The motivation for this 
study is given by the evaluation of the adaptive self-
configuration of the ARTÌS framework and the GAIA 
middleware, executed in transparent way with respect to the 
model and execution infrastructure characteristics. The target 
indices to be evaluated include: the observation of migration 
overheads related to model dynamics under GAIA, the 
advantages obtained by GAIA and ARTÌS under the adaptive 
communication overheads reduction, and the speedup obtained 
by our framework under variable execution scenarios and under 
variable modeling assumptions for the simulated wireless 
systems. 

     The execution architecture for our experiments was 
described in section 2.1. We performed multiple runs of each 
experiment, and the confidence intervals obtained with a 95% 
confidence level are lower than 5% the average value of the 
performance indices shown.  

    In the following we define as M the number of physical 
execution units (PEUs) supporting the simulation execution, and 
as N the total number of logical processes (LPs) implemented. 
With “migration ON” or “migration OFF” we identify a 
distributed simulation with the GAIA migration heuristic turned 
ON and OFF, respectively. All the performed experiments were 
started with a pseudo-random, uniform distribution of a variable 
number of SMHs for both the ad hoc, and the sensor networks 
models. Initially, the set of SMHs is randomly allocated over the 
set of PEUs, without any optimal allocation. The choice of the 
initial random distribution allows to analyze the transient 
dynamic effect of the GAIA migration mechanism. In [3] we 
shown that the random distribution would be asymptotically 
obtained  if migration is disabled, starting from any initial (and 
optimal) allocation scheme, due to the SMHs’ mobility. Most of 
the figures presented show transient behavior of the 
performance indices, because this describes the dynamics and 
fast convergence effect of the proposed mechanisms. Steady-
state results have been also discussed to define the asymptotical 
behavior of the proposed framework. 

 
5.1 Mobile Ad Hoc Network’s Simulation 
Figure 4 shows the transient number of model components 
(SMH) migrations performed by the GAIA middleware during 
the initial phase of a distributed simulation of the mobile ad hoc 
network model. The model is composed by 5000 SMHs, 
randomly distributed in the simulated area, and randomly 

57



allocated over three PEUs. The migration heuristic of GAIA 
begins to migrate the SMH model components between PEUs 
after a warmup (observation) phase of 50 timesteps. The figure 
4 shows the transient number of migrations performed between 
the three PEUs in every timestep, based on the average speed 
value of SMHs in the simulated mobile ad hoc network (i.e. 10, 
25 and 100 m/s). The SMH speed here is just a modeling factor 
to stress the simulation and it is not expected to be realistic. It 
can be observed that in the initial phase the GAIA middleware 
induces a peak of model components reallocation aiming to 
clusterize the interacting SMHs over the same PEU. The 
resulting model component allocation over PEUs at timestep 
1000 would be similar to the distribution shown in figure 2. In 
figure 2, one dot represents a SMH in the simulated area, and 
the color of dots indicates the PEU where the SMH is executed. 
It is clear the clustering effect obtained by GAIA migrations 
after the initial transient phase. At the steady state, the SMH 
(dots) mobility would smoothly require a continuous adaptation 
and migration of SMHs moving out of the context of SMHs 
executed over the local PEUs. Figure 4 indicates that the higher 
the mobility (speed) of SMHs, the higher is the reallocation rate 
required by GAIA to optimize the degree of local 
communications within the PEUs. 

 

 0

 5

 10

 15

 20

 0  500  1000  1500  2000  2500  3000

N
um

be
r 

of
 m

ig
ra

tio
ns

 

Timesteps

Ah Hoc Network: 3 LPs, 5000 SMHs

GAIA Migration ON: 100 m/s
GAIA Migration ON: 25 m/s
GAIA Migration ON: 10 m/s

 
Figure 4: transient number of GAIA migrations per 

timestep, with respect to modeled mobility parameters 

 
Figure 5 shows the Local Communication Ratio (LCR) of 
messages originated by the simulation in the same scenario 
considered in figure 2 and 4. The LCR is intuitively defined as 
the percentage of message passing required by the simulation 
execution which is local to each one of the three PEUs adopted 
for the execution. Given the ARTÌS design and assumptions, 
local message passing translates in efficient shared memory 
communication within each PEU, as an alternative to less 
efficient and time consuming network communications. Figure 5 
shows that the GAIA migration allows to obtain a steady-state 
percentage of local communications around 85% in the 
considered scenario. Figure 5 also indicates that the mobility of 
SMHs have less or no effect on the LCR index when GAIA 
migration is active. This is due to the adaptive effect of GAIA 
migrations at runtime, shown in figure 4. The same simulation 
scenarios with GAIA migration OFF result in a LCR index 
which is around 33%, as expected when interacting SMHs are 
randomly allocated over three PEUs. 

 

 0

 20

 40

 60

 80

 100

 0  500  1000  1500  2000  2500  3000

LC
R

 

Timesteps

Ad Hoc Network: 3 LPs, 5000 SMHs

GAIA Migration ON: 10 m/s
GAIA Migration ON: 25 m/s

GAIA Migration ON: 100 m/s
GAIA Migration OFF: 10,25,100 m/s

 
Figure 5: transient percentage of local communications per 
timestep, with respect to modeled mobility parameters, with 

and without GAIA migration 

 
Figure 6 shows results about the speedup of the distributed 
simulation under the mobile ad hoc modeling scenario 
considered above. The speedup is shown as a transient index, by 
averaging the consecutive speedup indices calculated over 
separated and adjacent simulated time windows. This allows to 
evaluate the transient effect of the speedup in the initial phase, 
and when GAIA is switched OFF at runtime. The monolithic 
scenario is considered as the normalization value for speedup 
evaluation. A monolithic simulation is intended as a single 
logical process (LP) executed over a single PEU. In our 
implementation, when analyzing the simulator performances, 
we considered the monolithic execution platform as equivalent 
to a single sequential simulator. We realize that this assumption 
is not true in practice, because a really small biasing effect is 
introduced by the ARTÌS middleware in background, anyway 
the biasing is really low, and this assumption allows us to study 
comparable systems and models.  

 

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1000  1500  2000  2500  3000

S
pe

ed
-u

p

Timesteps

Ad Hoc Network (10 m/s): Speed-up

GAIA Migration ON: M=3, N=3
GAIA Migration ON/OFF: M=3, N=3

GAIA Migration OFF: M=3, N=3
Monolithic

 
Figure 6: transient speedup effect over ARTÌS with and 

without the GAIA migration mechanism.  
Average SMH speed: 10 m/s 

 
When the simulation is executed over 3 PEUs (M = 3) and each 
PEU implements a single LP (N=3) with GAIA migration OFF, 
the speedup obtained is around the value 1.5 with respect to the 

58



monolithic execution scenario. In the same scenario with GAIA 
migration ON, the speedup starts around the value 2 and it 
increases up to 2.3 by the effect of GAIA dynamic reallocation 
and the increase of local communications. The curve labeled 
“GAIA Migration ON/OFF” shows the effect of degradation of 
the speedup obtained when, after the initial reallocation of 
GAIA, the GAIA migration is switched off: it is clear how the 
dynamic effect of SMH mobility (whose average speed is 10 
m/s) realizes a transient mutation of interactions (i.e. 
communication) from local to external for the PEUs, by 
decreasing the speedup.  

Figure 7 shows the same indices of figure 6, with the only 
difference given by the average speed of the modeled SMHs: 
from 10 m/s in figure 6 to 25 m/s in figure 7. As expected, the 
high modeled speed translates in less “time-locality” effect of 
local interactions. This reduces a little the speedup index 
obtained, because GAIA introduces less local communication 
advantages. On the other hand, the relative differences among 
the considered scenarios and mechanisms remain valuable, as in 
previous case. The same consideration about “time-locality” can 
be applied to explain why the speedup degradation when the 
GAIA migration is switched ON/OFF at runtime is faster in 
figure 7 than in figure 6. 

 

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1000  1500  2000  2500  3000

S
pe

ed
-u

p

Timesteps

Ad Hoc Network (25 m/s): Speed-up

GAIA Migration ON: M=3, N=3
GAIA Migration ON/OFF: M=3, N=3

GAIA Migration OFF: M=3, N=3
Monolithic

 
Figure 7: transient speedup effect over ARTÌS with and 

without the GAIA migration mechanism.  
Average SMH speed: 25 m/s 

 
Figure 8 shows the speedup investigation of many execution 
system architectures, based on the mobile ad hoc network model 
characterized by 5000 SMHs with average speed of 25 m/s. 
Every bar in the histogram shows the speedup with respect to 
the monolithic implementation, with GAIA Migration Off and 
On, respectively. The first couple of bars on the left are just a 
reference of the monolithic normalized speedup. In general, the 
GAIA migration has a positive effect on the speedup indices, 
with many PEUs, by increasing the speedup indices up to 25%. 
More specifically, the second couple of bars shows the speedup 
obtained by 3 LPs over 1 PEU. This indicates that ARTÌS is 
able to exploit the shared memory, dual processor architecture 
of the PEU, when implementing the simulation splitted on 3 
LPs. In the same way, as reported on the histogram, by 
increasing the number of PEUs (M value) in the execution 
architecture, ARTÌS and GAIA show to scale and to support 
more LP executions by gaining simulation speedup. In addition, 

in all the execution scenarios, GAIA dynamically recovers the 
insorgence of network communication due to model 
assumptions (SMH mobility), resulting in additional speedup. 

 

0,0

0,5

1,0

1,5

2,0

2,5

3,0

Sp
ee

d-
up

M=1,
N=1

M=1,
N=3

M=2,
N=2

M=2,
N=4

M=3,
N=3

M=3,
N=6

Ad Hoc (25 m/s): Speed-up

Migration OFF Migration ON
 

Figure 8: speedup investigation of ARTÌS and GAIA over 
many execution system architectures  

 
5.2 Sensor Network’s Simulation 
Figure 9 shows the scalability and speedup obtained by the 
simulation of the sensor network model previously defined. The 
effect of GAIA here is not considered because we are testing the 
scalability of the model and simulation implementation for a 
model composed by static wireless sensors. Again, every PEU 
considered here is a shared memory, dual processor architecture. 
We considered 3 execution scenarios. The monolithic scenario 
is realized by one LP over one PEU. The scenario labeled (M=3, 
N=6) is realized by 3 PEUs connected by the Ethernet LAN, 
each one with 2 LPs executed over the dual processor, shared 
memory architecture. The scenario labeled (M=2, N=4) is 
realized by 2 PEUs connected by the Ethernet LAN, each one 
with 2 LPs executed over the dual processor, shared memory 
architecture. The figure shows the speedup obtained as a 
function of the number of modeled sensors, i.e. the ARTÌS 
speedup and scalability under the model complexity viewpoint. 
The speedup obtained increases with the number of simulated 
sensors. This can be explained because a huge number of 
sensors could exploit the potential for parallel computation 
expressed by the multiple number of processors in  the 
execution architecture. The speedup obtained by 3 PEU 
outperforms the speedup obtained with only 2 PEUs, as 
expected. When  the number of sensors is really high (i.e. 
around 40.000) the speedup index reaches the top value, and 
does not show reductions, indicating the good scalability 
achieved by the simulator performance. As a marginal note, by 
considering that a state occupancy of a sensor model entity in 
our experiments was around 250 Bytes, we executed a single 
experiment for a simulation of 1.000.000 sensors without having 
evidence of any problem. Additional investigation will be 
performed on the evaluation of GAIA reallocation mechanism 
under the sensor network scenario, in the initial phase. This 
would contribute to further optimize and increase the local 
communication and speedup obtained. 

 

59



 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 10000  15000  20000  25000  30000  35000  40000

S
pe

ed
-u

p 

Number of Sensors

Sensors Network: Speed-up

GAIA Migration OFF: M=3, N=6
GAIA Migration OFF: M=2, N=4

Monolithic

 
Figure 9: speedup and scalability investigation of ARTÌS for 

a massive sensor network model 

 
6. CONCLUSIONS AND FUTURE WORK 
In this work we illustrated the design and motivations, and we 
tested a new framework obtained as the integration of two 
recently developed middlewares defined to support the parallel 
and distributed simulation of large scale, complex wireless 
system models. The ARTÌS middleware is a new framework 
incorporating a set of features that allow an adaptive 
optimization of the communication layer management in a 
distributed simulation scenario supported by heterogeneous 
systems and communication services. ARTÌS has been 
integrated with GAIA, a dynamic mechanism for the runtime 
management and adaptive allocation of model entities in a 
distributed simulation. GAIA adapts the dynamic and time-
persistent causal effects of model interactions to dynamic 
migration of model entities.  

Two classes of wireless systems models have been considered in 
our testbed evaluation of the ARTÌS and GAIA framework. The 
two classes of models have been selected i) because they 
represent two examples of widely studied systems and ii) 
because they capture most of the complementary characteristics 
of wireless simulation systems. The definition of a mobile ad 
hoc network model was basically selected to study the effect of 
hosts’ mobility and high communication loads assumptions 
under the model viewpoint. The static sensor network model 
was adopted to test the middleware scalability based on the 
ARTÌS runtime in isolation (i.e. without GAIA). This let us to 
obtain results about the optimization and speedup of our 
simulation framework, based on the exploitation and adaptation 
to variable model characteristics. 

Results shown that the proposed simulation framework is able to 
transparently adapt to the execution system and model 
characteristics, by dynamically reducing the communication 
overheads, and by increasing the simulation scalability and 
speedup. 

     Our future work will include the ARTÌS extension with 
optimistic management and the definition of new models for 
dynamically interacting systems like multi-agent systems, P2P 
models, complete protocol stacks for ad hoc and sensor models, 
biology-inspired models and molecular systems, elementary 
particles physics and cosmology systems. 

Acknowledgments 
    This work is  supported by  MIUR FIRB funds, under the 
project: “Performance Evaluation of Complex Systems: 
Techniques, Methodologies and Tools”. 

 

7. REFERENCES 
 

[1]  R. Bagrodia, R. Meyer, M. Takai, Y. Chen, X. Zeng, J. 
Martin, and H.Y. Song, “PARSEC: a parallel simulation 
environment for complex systems”, IEEE Computer, 
31(10), October 1998, pp.77-85 

[2]  A. Berrached, M. Beheshti, O. Sirisaengtaksin, and A. 
Korvin, “Alternative Approaches to multicast group 
allocation in HLA data distribution”, Proc. Of the 1998 
Spring Simulation Interoperability Workshop, 1998 

[3]  L.Bononi, G.D'Angelo, L.Donatiello, “HLA-Based 
Adaptive Distributed Simulation of Wireless Mobile 
Systems”, in Proceedings of IEEE/ACM Intern. Workshop 
on Parallel and Distributed Simulation (PADS'03), San 
Diego, CA, June 2003 

[4]  L.Bononi, M. Bracuto, G. D’Angelo, L. Donatiello, 
“ARTÌS: a Parallel and Distributed Simulation Middleware 
for Performance Evaluation”, University of Bologna Int. 
Report, 
http://www.cs.unibo.it/~bononi/Reports/ARTISTR.pdf, 
Mar. 2004 

[5]  A. Boukerche, and S.K. Das, “Dynamic Load Balancing 
Strategies for Conservative Parallel Simulation”, Proc. of 
11-th Workshop on Parallel and Distributed Simulation 
(PADS’97), June 1997, Lockenhaus, Austria, pp. 20-28 

[6]  A. Boukerche, S.K. Das, A. Fabbri, ”SWiMNet: A Scalable 
Parallel Simulation Testbed for Wireless and Mobile 
Networks”, ACM/Kluwer Journal on Wireless Networks, 
Vol 7, No 5, pp. 467-486. 2001 

[7]  A. Boukerche, and A. Fabbri, ”Partitioning Parallel 
Simulation of Wireless Networks”, Proc. of the 2000 
Winter Simulation Conference (WSC), 2000 

[8]  J. Dahmann, R.M. Fujimoto, and R.M. Weatherly, “High 
Level Architecture for Simulation: an update”, Winter 
Simulation Conference, December 1998 

[9]  S.R. Das, “Adaptive protocols for Parallel Discrete Event 
Simulation”, Proc. of Winter Simulation Conference, 1996 

[10]  W.J. Davis, G.L. Moeller, “The High Level Architecture: is 
there a better way?”, proc. Winter Simulation Conference, 
1999 

[11]  E. Deelman, and B.K. Szymanski, “Dynamic load 
balancing in parallel discrete event simulation for spatially 
explicit problems”, Proc. of the 12-th workshop on Parallel 
and distributed simulation PADS’98, July 1998 

[12]  DMSO: Defence Modeling and Simulation Office (1998), 
High Level Architecture RTI Interface Specification, Vers. 
1.3 

60



[13]  A. Ferscha, “Parallel and Distributed Simulation of  
Discrete Event Systems”, In Handbook of Parallel and 
Distributed Computing, McGraw-Hill, 1995 

[14]  Fujimoto, R.M., Parallel and Distributed Simulation 
Systems, John Wiley & Sons, 2000 

[15]  B.P. Gan, Y.H. Low, S. Jain, S.J. Turner, W. Cai, W.J. 
Hsu, and S.Y. Huang, “Load balancing for conservative 
simulation on shared memory multiprocessor systems”, 
Proc. of the 14-th workshop on Parallel and distributed 
simulation (PADS’00), May 28-31, 2000, Bologna, Italy, 
p.139-146 

[16]  P. Huang, D. Estrin, and J. Heidemann, “Enabling large-
scale simulations: Selective abstraction approach to the 
study of multicast protocols”, proc. Mascots'98, Oct. 1998 

[17]  IEEE Std 1516-2000: IEEE standard for modeling and 
simulation (M&S) high level architecture (HLA) - 
framework and rules, - federate interface specification, - 
object model template (OMT) specification, - IEEE 
Recommended Practice for High Level Architecture (HLA) 
Federation Development and Execution Process (FEDEP), 
2000 

[18]  Internet Engineering Task Force, MANET WG Charter, 
http://www.ietf.org/html.charters/manet-charter.html 

[19]  K.G. Jones, and S.R. Das S.R., “Parallel Execution of a 
sequential network simulator”, Proc. of the 2000 Winter 
Simulation Conference, 2000 

[20]  O.E. Kelly, J. Lai, N.B. Mandayam, A.T. Ogielski, J. 
Panchal, R.D. Yates, “Scalable parallel simulations of 
wireless networks with WiPPET: modeling of radio 
propagation, mobility and protocols”, Mobile Networks 
and Applications, v.5, n.3, September 2000, pp.199-208 

[21]  M. Liljenstam, R. Ronngren and R. Ayani, “MobSim++: 
Parallel Simulation of Personal Communication 
Networks“, IEEE Distributed Systems, vol 2, No 2, 
February 2001 

[22]  W.W. Liu, C.C. Chiang, H.K. Wu, V. Jha, M. Gerla, and R. 
Bagrodia, “Parallel simulation environment for mobile 
wireless networks”, Proc. of Winter Simulation 
Conference, 1996 

[23]  B. Logan, and G. Theodoropoulos, “The Distributed 
Simulation of Multi-Agent Systems”, Proc. of the IEEE, 
2001 

[24]  J. Lüthi, and S. Großmann, “The resource sharing system: 
dynamic federate mapping for HLA-based distributed 
simulation”, Proc. of the 15-th workshop on Parallel and 
distributed simulation (PADS’01), May 2001, Lake 
Arrowhead 

[25]  M. Myjak, S. Sharp, W. Shu, W. Wei, J. Riehl, D. Berkley, 
P. Nguyen, S. Camplin, and M. Roche, “Implementing 
object transfer in HLA”,  Proc. 5-th Simulation 
Interoperability Workshop (SIW’99), Orlando, Florida, 
March 1999 

[26]  V. Naoumov and T. Gross, "Simulation of Large Ad Hoc 
Networks" in proc. MSWiM 2003, San Diego, CA, Sept. 
2003 

[27]  K. Perumalla, R.M. Fujimoto, and A. Ogielsky, “TeD - A 
language for modeling telecommunications networks”, 
Performance Evaluation Review 25(4), 1998 

[28]  D.M. Rao, and P.A. Wilsey, “An Ultra-large Scale 
Simulation Framework”, Proc. of MASCOTS '99, Oct. 
1999 

[29]  D.M. Rao, and P.A. Wilsey, “An object oriented 
framework for parallel simulation of ultra-large 
communication networks”, proc. 3-rd Inter.l symposium on 
computing and object oriented parallel environments, Nov. 
1999 

[30]  D.M. Rao, and P.A. Wilsey, “Parallel Co-simulation of 
Conventional and Active Networks”, Proc. of 
MASCOTS’00, August 2000 

[31]  G.F. Riley, R.M. Fujimoto, M.H. Ammar, “A generic 
framework for parallelization of network simulations”, 
Proc. of MASCOTS'99, College Park, MD, October 1999 

[32]  G.F. Riley, M.F. Ammar, R.M. Fujimoto, K. Perumalla, 
and D. Xu, “Distributed Network Simulations using the 
Dynamic Simulation Backplane”, MASCOTS' 01, Aug. 
2001 

[33]  G.F. Riley, and M.H. Ammar, “Simulating Large Networks 
How Big is Big Enough?”, Proc. of First Intern.l 
Conference on Grand Challenges for Modeling and 
Simulation, Jan. 2002 

[34]  J. Short, R. Bagrodia, and L. Kleinrock, “Mobile wireless 
network system simulation”, Wireless Networks 1, August 
1995 

[35]  T.K. Som, and R.G. Sargent, “Model structure and load 
balancing in optimistic parallel discrete event simulation”, 
Proc. of the 14-th workshop on Parallel and distributed 
simulation, May 2000, Bologna 

[36]  K. Tang, M. Correa, and M. Gerla, “Effects of Ad Hoc 
MAC Layer Medium Access Mechanisms Under TCP”, 
ACM/Kluwer Mobile Networks and Applications, 2001 

[37]  UCB/LNBL/VINT The NS2 network simulator, 
http://www.isi.edu/nsnam/ns/  

[38]  A. Varga, OMNET++ in "Software Tools for Networking", 
IEEE Network Interactive. July 2002, Vol.16 No.4 

[39]  V-Y Vee, and W-J Hsu, “Locality-preserving load-
balancing mechanisms for synchronous simulations on 
shared-memory multiprocessors”, Proc. of 14-th workshop 
on Parallel and distr. simulation, May 2000, Bologna, Italy, 
p.131-138 

[40]  X. Zeng, R. Bagrodia, and M. Gerla, “GloMoSim: A 
library for parallel simulation of large-scale wireless 
networks”, Proc. of Workshop of Parallel and Distributed 
Simulation (PADS’98), Banff, Alberta, Canada, May 1998 

  
 
 

61




