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Abstract: In multiagent systems a coalition structure is a col-
lection of pair-wise disjoint subsets of agents whose union
yields the entire population. Given a characteristic function
quantifying the worth of agent subsets, searching for optimal
coalition structures (i.e. where the sum of subsets’ worth is
maximal) is a well-known NP-hard combinatorial optimiza-
tion problem. While existing algorithms (either deterministic
or stochastic) deal with time-invariant goal functions, the fo-
cus here is on dynamic settings, where the worth of agent sub-
sets possibly varies over time in an unknown and unpredictable
fashion. The aim is to design an adaptive dynamic process gen-
erating coalition structures with high worth most of the times.
To this end, detecting variations in the worth of agent sub-
sets becomes crucial. The proposed method takes into account
such (possible) changes by intensifying the exploration activity
whenever they are detected. The performance with respect to
the worth of optimal coalition structures is evaluated through
simulations.
Keywords: Adaptive Coalition Structure Generation, Coali-
tional Game, Simulation, Dynamic and Non-superadditive En-
vironment, Cooperative Multiagent System.

1. Introduction

MAS (multiagent systems) are said to becooperativewhen
agents are assumed to collaborate in order to achieve some
optimal outcome of the overall system [15] [20] [21]. In this
setting, a great deal of attention has been paid to coalition
structure generation, where outcomes arepartitionsof agents,
that is, collections of disjoint coalitions or subsets of agents,
called blocks, whose union yields the entire population. Given
a characteristic function CF or coalitional game, assigning
a worth to each coalition, the worth of coalition structures
obtains as the sum of their blocks’ worth, and optimality attains
where such a global worth is maximal. Searching for optimal
coalition structures is a NP-hard combinatorial optimization
problem [16] [17], whose generic instance consists of the2m-
dimensional real-valued vector specifying the worth of (non-
empty) coalitions, wherem ∈ N is the (finite) number of
agents (whileN is the set of naturals).

A main aim of this paper is to formally organize and mathe-
matically approach coalition structure generation in dynamic
settings, where the worth of coalitions varies over time in
an unknown and unpredictable fashion. In the static scenario,
searching amounts to (efficiently) explore the space of candi-
date solutions (namely, the lattice of partitions of agents), iden-
tifying the optimal ones. Conversely, in the dynamic scenario

the set of optimal coalition structures changes over time. In
this case, any solver can only aim at generating as often as
possible near-optimal coalition structures. In fact, a main as-
sumption shall be that the initial goal function is not known
and that no information is available concerning if, when and
how such a goal function shall vary, the only available infor-
mation at each time being simply the worth of (the blocks of)
the coalition structure generated at that time. Hence, any solver
crucially has to detect changes of the goal function and allow
for re-generating coalition structures previously found to be
poor when such changes do (or seem to) occur.

While in the static formulation any stochastic search method
can be compared with some deterministic one [11] [16] [18],
the dynamic formulation lacks benchmarks for comparisons.
There is no univocally defined solution, and different solvers
can only be compared, through simulation results, in terms of
some performance index. The proposed mechanism identifies
coalitions as decisional units, and thus it is distributed,that is,
without a central authority. Although it is adjustable for coali-
tion structure generation in the non-CF form [18], this paper
focuses on the CF form. In particular, the time-varying worth
of coalitions is chosen in a way such that at each time the set of
optimal coalition structures and the associated maximal worth
are easily determined. This is used for comparing, at each time,
the worth of generated coalition structures with the worth of
optimal coalition structures. The contribution is methodolog-
ical, providing a solver for a novel dynamic setting, which
is therefore dealt with in essentially abstract terms. Sucha
solver is tested through simulations in the challenging scenario
where the time-varying CF is double-peaked (i.e. displaying
two maxima, a global and a local one) and bi-symmetric (i.e.
with the population partitioned into two types and the worthof
coalitions depending only on members’ type).

Although this paper addresses dynamic environments, it
seems worth recalling that searching for optimal partitions of
a (finite) set with given CF is a problem arising in a variety of
applications. Mainly, incombinatorial auctions(where agents
are to be interpreted as goods to sell and the CF gets deter-
mined by the available bids), maximizing the revenue amounts
to optimally partition the goods and sell the blocks. Similarly,
in task allocation mechanism design, if the system has to per-
form a set of basic tasks each of which may be performed
more or less efficiently by different coalitions, then global task
performance is maximized when both agents and tasks to be
performed are optimally partitioned with a bijection between
these two partitions such that each block of agents performs
exactly one block of tasks [7] [19]. In fact, this issue is em-
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bedded within the more generalstrategic multi-agent systems
framework, wherenegotiation protocolsplay a fundamental
role, and such an (alternative) scenario is briefly dealt with in
the sequel as related work. But perhaps the broader framework
where optimal partitions crucially enter the picture ishard (or,
more generally,fuzzy) clustering, that is, a data set is to be
optimally partitioned so to have, roughly speaking, maximum
(minimum) diversity between (within) blocks.

2. Preliminaries

The agent set isM := {0, 1, . . . ,m − 1} ⊂ Z+, where
Z+ = N ∪ {0} denotes the set of positive integers. That is, the
first m − 1 positive integers are the identifiers of agents. The
set of coalitions (or subsets of agents) is2M = {A : A ⊆ M}.
A coalition structure is a partition ofM , that is, a (nonempty)
setP of (nonempty) and pair wise disjoint coalitions, called
blocks, whose union yieldsM . Formally,P = {A1, . . . , A|P |}
such that∅ 6= Ah ∈ 2M for 1 ≤ k ≤ |P | and∅ = Ah ∩Ak for
1 ≤ h < k ≤ |P |, with | · | denoting cardinality as usual.

Let PM denote the set of coalition structures. In fact,
(PM ,∧,∨) is a lattice, ordered bycoarsening> and with
meet∧ andjoin ∨. That is, ifP,Q ∈ PM andP > Q, then
every block ofQ is a subset of some block ofP . Also,P ∧ Q

is the coarsest partition finer than bothP andQ, while P ∨ Q

is the finest partition coarser than bothP andQ [3]. Recursion
B0 := 1, Bm =

∑

0≤k≤m−1

(

m−1
k

)

Bk yields the (m-th Bell)
number|PM | = Bm of partitions ofm-sets [3] [9].

A CF or coalitional gamev : 2M → R+, v(∅) = 0
quantifies the worth of coalitions. The worthw(P ) of coalition
structuresP is given by the sum of their blocks’ worth:

w(P ) =
∑

A∈P

v(A) for all P ∈ PM . (1)

Let PM
∗ = {P ∈ PM : w(P ) ≥ w(Q) for all Q ∈ PM}

contain all optimal coalition structures. Coalitional gamesv are
2m-dimensional vectorsv ∈ R

2m

+ . They aresuperadditiveif
v(A∪B) ≥ v(A)+v(B) for all A,B ∈ 2M such thatA∩B =
∅, while if ≥ is replaced with≤, thenv is subadditive. Apart
from the chosen dynamic scenario, the concern here is with
optimal coalition structures whenv is neither superadditive
nor subadditive [20], as ifv is superadditive, thenv(M) ≥
∑

A∈P v(A) for all P ∈ PM , while if v is subadditive, then
∑

i∈M v(i) ≥
∑

A∈P v(A) for all P ∈ PM . That is to say, if
v is superadditive, then the coarsest (top) coalition structure
P⊤ = {M} is optimal, while if v is subadditive, then the
finest (bottom) coalition structureP⊥ = {{0}, . . . , {m − 1}}
is optimal. A coalitional game issymmetricif the worthv(A)
of any coalition depends only on its cardinality|A|. That is
to say, there is some functionγ : {0, 1, . . . ,m} → R+ such
that v(A) = γ(|A|) for all A ∈ 2M . In cooperative game
theory, partition functionsw : PM → R+ are known as
global games. If the worth of coalition structures is given by
expression (1) above for some coalitional gamev, thenw is
additively separable[8].

Theclassof partitionsP ∈ PM is them-vector of positive
integerscP = {cP

1 , . . . , cP
m} ∈ Z

m
+ wherecP

k is the number of
k-cardinal blocks ofP [3]. It is not hard to see that if global
gamew is additively separatedby coalitional gamev which,

in turn, is symmetric (through someγ), then cP = cQ ⇒
w(P ) = w(Q) for all pairs P,Q ∈ PM . The number of
optimal coalition structures then is large, making it easier to
search on the one hand, but also more demanding to coordinate
in massive systems on the other (see below).

In a static environment the worth of coalition structures (that
is, the goal function) does not change in time, while in a dy-
namic one such a main time-invariance assumption is relaxed.
Yet, apart from different possible magnitudes and frequencies
of changes in the goal function, environments can be dynamic
in rather different ways. In particular, a main distinctionseems
the following: either changes of the goal function, when they
occur, constitute a novel input of the search problem, or else
they have to be detected by the solver itself. In the former
case, no matter how often and/or unpredictably changes do
occur, the solver knows the worth of each coalition at each
time. In turn, this crucially implies that over any time interval
during which the2m − 1 worths of coalitions are known not
to vary one may well (and should reasonably) use any avail-
able static search method. Conversely, in the latter case none
of such methods seems very useful, because at each time one
only knows the worth of those coalitions that are blocks of the
partition prevailing at that time (that is, one never knows the
worth of all conceivable coalitions). Put it differently, the goal
function shall vary, in general, while any static search is per-
formed. This latter is precisely the setting under concern here.

Deterministic (static) search methods for optimal coalition
structures in CF form essentially work as follows. Firstly,they
explore the top,m − 1-th, and them − 2-th levels of partition
lattice (PM ,∧,∨) (whose bottom level is level 0, and there
arem levels). That is to say, they checkw({M}) and all the
2m−1 − 1 worthsw({A,M\A}), ∅ ⊂ A ⊂ M of 2-cardinal
partitions. This (exponential) search provides an upper bound
(which is m) for the ratio of the worth of optimal coalition
structures and the highest checked worth. Next, searching pro-
ceeds to the lower levels of the partition lattice, as long as
there is time available, and the upper bound decreases more or
less rapidly depending on the chosen method [11] [16]. On the
other hand, stochastic methods are compared with determinis-
tic ones in terms of the worthiest coalition structure produced
for any fixed amount of time available for the search [18]. In
this respect, the former methods seem to outperform the latter,
and the gap is greater when concerned with the non-CF form,
where the partition functionw : PM → R+ is not additively
separable, that is, admitting no CFv : 2M → R+ such that
w(P ) =

∑

A∈P v(A) for all P ∈ PM (see above).

3. Dynamic coalition structure generation

Available coalition structure generation methods explorePM ,
treated as the search space, toward optimality, along some
time-pattern of partitionsP 0, P 1, . . . , P t, . . . , PT ∈ PM ,
which may be determined through a deterministic or else
stochastic rule. At eacht, the worthw(P t) of the currently
generated partition structure is explored (i.e. computed), and
the output, at any (possibly constrained) timet, is the latest
found coalition structure of maximal worth. Whatever pattern
is chosen, the goal function is crucially assumed to remain
fixed over time. This may be called thestatic search setting.
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As for the situation where the worthv of coalitions (or, more
generally, the worthw of partitions) may vary unpredictably
over time, letIt, 0 ≤ t < T denote the information avail-
able for generating the coalition structureP t+1 that will pre-
vail at time t + 1. Minimally, the solver should be endowed
with all previously generated coalition structures and associ-
ated (global) worth. That is, minimally,It ∋ P t′ , wt′(P

t′)
for 0 ≤ t′ ≤ t, wherewt′(P

t′) denotes the worth attained
by the coalition structureP t′ generated att′. Then, ady-
namic coalition structure generationmethod is a sequence
f t, t > 0 of mappings or rules specifying how to obtainP t

given It−1. Concretely, such rules induce some probability
distributionf t

I : PM → [0, 1] over the partition lattice, that is,
∑

P∈PM f t
I(P ) = 1. Finally, any such a dynamic generation

method has the goal to maximize
∑

0≤t≤T wt(P
t)δt, where

δ ∈ (0, 1] is some discount factor, and the whole time hori-
zonT may or may not be known. In the latter case the goal is
to maximize the lim

T→∞
of this summation of all the worths of

generated coalition structures. In fact, letδ = 1 for simplicity.
With this formalization, the static search setting corre-

sponds to the situation where the setsIt, t ≥ 0, together
with the above minimal information, also encode that there
exists a unique (i.e. time-invariant) coalitional game or CF
v : 2M → R+ such thatwt(P

t) =
∑

A∈P t v(A) for all
0 ≤ t ≤ T . This is here named thestatic CF form scenario.
More sophisticatedly, one may only have the weaker informa-
tion that for allt ≥ 0 there is somevt : 2M → R+ such that
wt(P

t) =
∑

A∈P t vt(A). This is here named thedynamic CF
form scenario, as the coalitional gamevt that additively sep-
arates the global gamewt (which, in turn, assigns a worth to
coalition structureP t) may be time-varying. Next, there is the
static non-CF form scenario, where one knows that there exists
a unique (i.e. time invariant) global gamew : PM → R+ such
thatwt(P

t) = w(P t) for all 0 ≤ t ≤ T . Finally, thedynamic
non-CF form scenariocorresponds precisely the case where
the information setsIt, t ≥ 0 are minimal in the above sense:
one only knows the previously generated coalition structures
and their realized worth. Hence, in dynamic scenarios (whether
in CF form or not and independently fromT ) the available in-
formation is not sufficient for computing the worth of optimal
coalition structures, even from a fullyex postviewpoint.

While no static search will ever evaluate twice any partition,
in dynamic scenarios some constant exploration of, virtually,
the whole spacePM seems needed, although it may be more
or less intense depending on previous performance. In fact,
dynamic generation algorithms should detect changes of the
goal function, and allow for each partition to be generated with
strictly positive probability after each such detection. Also,
deterministic methods correspond to sequences of generation
rules f t, t > 0 inducing probabilities that place the whole
unitary mass on one coalition structure:f t

I(P ) = 1 for a
uniqueP ∈ PM , P = P t, while f t

I(Q) = 0 for all Q ∈ PM ,
Q 6= P . Otherwise, if|{P ∈ PM : f t

I(P ) > 0}| > 1, that is,
if more then one partition has a strictly positive probability of
being generated, then the method is stochastic.

Although metaheuristicsapply to combinatorial optimiza-
tion problems and the dynamic scenarios (in CF form or not)
described above do not yield a typical instance for any such

a problem, a common issue is how to dynamically balance
betweendiversification(i.e. exploration of the search space)
andintensification(i.e. exploitation of accumulated search ex-
perience), so to quickly identify regions of the search space
with high quality solutions and, on the other side, not to
waste too much time in poor regions [5]. Two main philoso-
phies aretrajectory methods, which are sophistications of local
search algorithms (such as tabu search, iterated local search,
variable neighborhood search and simulated annealing), and
population-based methods(such as ant colony optimization
and evolutionary computation), that incorporate a learning
component. In evolutionary computation, this latter component
is based on recombination of previously evaluated solutions
[18]. Here, basic iterated local search empowered with strictly
positive probabilities of re-visiting previously generated parti-
tions (which shall depend, in turn, on some time-varying and
performance-dependent level of exploration activity) seems a
suitable approach to the dynamic problem addressed here.

Roughly speaking, iterated local search for coalition struc-
ture generation outputs a sequence

(

P t,PM
Pt

)

, t ≥ 0 of pairs
of a partitionP t ∈ PM and some associated neighborhood
PM

P t ⊂ PM within which a search, whether deterministic
or stochastic, exhaustive or partial, is conducted. Crucially,
apart from the very first generated partitionP 0 (and associ-
ated neighborhood), all subsequent partitionsP t, t > 0 (and
associated neighborhoodsPM

P t) are not generated through pure
randomization, but according to some higher level criterion.

3.1 Related work

When conceiving multistage coalition structure generationre-
sulting from individual agents’ decisions, many times such
decisions are to be assumed driven by selfishness, in which
case models often disregard the CF form, while emphasiz-
ing stability and/or bounded computational capability. For ex-
ample, agents may be assumed to periodically receive tasks
whose performance requires to join coalitions, and thereby
to join those coalitions where their individual task is more
likely to be performed and/or where they receive higher pay-
offs for contributing to other’s tasks performance (and perhaps
e-commerce is the main application of such models). From
such a viewpoint, the focus is on coalition formation resulting
from agents’ use ofnegotiation protocols[4] [7] [10] [12] [13]
[20] [22]. “A self-interested agent will choose the best strategy
for itself, which cannot be explicitly imposed form outside.
Therefore, the protocols need to be designed using anonco-
operative, strategicperspective: the main question is what so-
cial outcomes follow given a protocol whichguarantees that
each agent’s desired local strategy is best for that agent - and
thus the agent will use it” (see [15], pp. 201-202). Conversely,
in cooperative systems no negotiation whatsoever needs to be
modeled, as there is no selfish behavior. Borrowing from game
theory, the former setting is concerned withconflict games,
where, roughly speaking, any outcome leaves some players
unsatisfied, while the latter one is concerned withcoordina-
tion games, where there is a non-empty set of outcomes which
are the most desirable byall agents, and thus the issue is how
to coordinate all agents so to get any of such socially optimal
outcomes.
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4. Merge & split generation

Focusing on coalition structure generation in the dynamic CF
form scenario, a main feature of the proposed merge & split
method is that the intensity of the exploration activity is con-
trolled (and, in particular, dynamically fine-tuned) through a
mainexploration parameterα(t) ∈ (0, 1), which shall depend
on theH ∈ N global worthsw(P t−h), 1 ≤ h ≤ H, whereH

identifies thememoryof the model. These worths are used pre-
cisely for detecting whether the goal function is likely to have
recently changed or not. In fact, within each cyclet > 0, the
performed simulations firstly compute the worthw(P t−1) of
the coalition structure inherited from the past. Secondly,they
compute such a parameterα(t), next used as the basis upon
which all randomization is carried out, depending on whether
cycle t is devoted tomerging, or else tosplitting, or else to
pure randomization. A merging cycle always ends by defining
a coalition structureP t > P t−1, while a splitting cycle always
ends by defining a coalition structureP t 6 P t−1 and a pure
randomization cycle may well generate a coalition structure
such thatP t 6> P t−1 6> P t. The generation process is stochas-
tic: given the available informationIt−1, all cyclest produce
coalition structureP t as the realization of a random partition
according to a probability distributionf t

I : PM → [0, 1].
Concerningα(t), let t > 2H and consider the lastH

generated coalition structuresP t−H , P t−H+1, . . . , P t−1. Af-
ter evaluatingw(P t−1), cycle t proceeds computingα(t) as
a function of the2H + 2 valuesw(P t−h) andα(t − h) for
1 ≤ h ≤ H + 1, as follows. Setw∗

t := max{w(P t′) : t′ ≤ t},

∆w(P t) :=
(w(P t)

w∗
t

−
w(P t−1)

w∗
t−1

)/(w(P t−1)

w∗
t−1

)

,

∆α(t) :=
α(t) − α(t − 1)

α(t − 1)
.

As
∑

1≤h≤H

h =
(

H+1
2

)

[9], let γ(h,H) :=
(H+1

2 )
H−h+1 and then

chooseα(t) so to stay as close as possible to verifying

∑

1≤h≤H

∆w(P t−h)

γ(h,H)
=

∑

1≤h≤H

1 − ∆α(t − h + 1)

γ(h,H)
. (2)

The exploration parameter is used in a way (described be-
low) such that the greaterα(t), the more the generated par-
tition P t is allowed to differ from the previously generated
oneP t−1. In fact, the above expression requires that the lat-
est valueα(t) is determined so that the weighted average of
(1−α(t−H +1)), . . . , (1−α(t)) is as close as possible to the
weighted average of∆w(P t−H), . . . ,∆w(P t−1), with more
recent values having more weight than older ones. Neverthe-
less, while this latter average may take any value (depending
on the observed worth of generated partitions), the way the ex-
ploration parameter is used requires this latter to be bounded,
that is,0 < α ≤ α(t) ≤ α < 1. Accordingly, if theα(t) that
satisfies expression (2) above (there always exist a unique one)
exceedsα, thenα(t) = α. On the other hand, if it turns out to
be less thanα, thenα(t) = α. In this way,α(t) is constantly
updated in a way such that, roughly speaking, the more increas-
ing the worth of the lastH generated partitions, the less intense
the exploration activity over the lastH cycles. In particular,

α = 0.05 = 1 − α and, concerning initialization,α(k) = α

for −H ≤ k ≤ 1 and∆w(P k) := 0 for −H ≤ k ≤ 0.
The proposed method basically alternates two transitions,

split and merge, but if the recent performance turns out to be
particularly poor (which could well be due, in fact, to a change
in the CF assigning a worth to each coalition), then a pure
randomization cycle is used. In this respect, note that by con-
struction the largerα(t), the smaller the worth of the most re-
cently generated partitionsP t−1, . . . , P t−H . Accordingly, let
α̂ be some threshold value such that ifα(t) ≥ α̂, then cyclet
proceeds to pure randomization, as described hereafter. Other-
wise, it proceeds to splitting or else to merging depending on
whether cyclet − 1 has been a merging or else a splitting one,
as detailed below. In practice,α̂ = 0.5; this threshold value has
been chosen (among others that have been tested), on the ba-
sis of its observed performance in preliminary simulations. In
fact, defining this threshold value as a function of the available
information, that is,̂α = α̂t = α̂t(It−1), and according to a
higher level criterion is a conceivable a future development.

Pure randomization. Starting from some exogenous initial
partitionP 0, the first cycle (i.e. cycle 1) is a pure randomiza-
tion one. In fact, given initialization,α(1) > 0.5 (see above).
Also, as initially there is no available information, this seems
the most natural and reasonable choice. Simulations always
start with the finest partitionP 0 = {{0}, {1}, . . . , {m − 1}}.
All successive pure randomization cyclest > 1 work exactly
the same as cycle 1, inheriting some partitionP t−1 from the
past. Hence, this cycle type is described for generict, given
P t−1 = {At−1

1 , . . . , At−1
|P t−1|}. After computing global worth

w(P t−1) andα(t) ∈ [α, 1 − α] accordingly (see above), if
α(t) ≥ α̂, then the pure randomization cycle firstly generates a
random subsetS ⊆ P t−1 of P t−1’s blocks within which some
random splittingshall occur. Conversely, within the comple-
ment setP t−1\S of remaining blocks somerandom merging
shall occur. Aiming to have larger blocks more likely inS and
smaller ones more likely in the complementP t−1\S, a ran-
dom realαi ∈ [0, 1] is generated for each agenti ∈ M . Then,
S = {A1, . . . , A|S|} =

S =
{

A ∈ P t−1 : |{i ∈ A : αi ∈ [1 − α(t), α(t)]}| > 0
}

,

where the labeling1, . . . , |S| of coalitionsA ∈ S is random. In
words, the largerα(t) (and, in any case,α(t) ≥ 0.5), the larger
the interval[1 − α(t), α(t)]. Also, for each blockA ∈ P t−1,
the larger|A|, the more likely at least one agenti ∈ A realizes
someαi ∈ [1 − α(t), α(t)], in which caseA ∈ S. Clearly,
P t−1\S = Sc = {B1, . . . , B|Sc|} =

=
{

B ∈ P t−1 : |{i ∈ B : αi ∈ [1 − α(t), α(t)]}| = 0
}

,

where, again, the labeling1, . . . , |Sc| of coalitionsB ∈ Sc is
random. In this way,P t−1 (which is a collection of disjoint
coalitions) gets partitioned intoS and its complementSc.

Within S random splitting occurs by means of theαi’s
above: for each blockA ∈ S, another setA′ ⊆ A is created
asA′ = {i ∈ A : αi < 0.5}. On the other hand, withinSc

random merging occurs as follows. Firstly, again,Sc splits in
two disjoint sets,S1, S

c
1 = Sc\S1, by generating a random real

αk ∈ [0, 1] for eachBk ∈ Sc (i.e. 1 ≤ k ≤ |Sc|) and setting
S1 = {Bk ∈ Sc : αk < 0.5}. Next, for eachBk ∈ S1, a
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random integerβk ∈ {0, 1, . . . , |Sc
1|} is generated. The newly

generated partitionP t can now be defined as follows.
Random merging:if βk = 0, thenBk ∈ P t; otherwise, if

βk > 0, then(Bk∪Bβk
) ⊆ B′ ∈ P t; in words, ifβk = 0, then

Bk, which is a block of the inherited partitionP t−1, remains a
block of the newly generated partitionP t as well. Conversely,
if βk > 0, thenBk merges with blockBβk

from Sc
1, which,

in turn, also merges with all other blocksBh ∈ S1 such that
βh = βk. That is to say, a generic blockB′ (resulting from
random merging) of the newly generated partitionP t has form
B′ = (Bk ∪ Bβk

) ∪
h:βh=βk>0

Bh.

Random splitting:if ∅ ⊂ A′ ⊂ A, then bothA′ andA\A′

are blocks of the newly generated partition:A′, A\A′ ∈ P t.
Otherwise,A being a block of the inherited partitionP t−1, it
also remains a block of the newly generated one:A ∈ P t.

If the αi’s, i ∈ M , are such thatS = ∅ ⇒ Sc = P t−1, then
the pure randomization cycle only performs random merging
within P t−1. Similarly, if Sc = ∅ ⇒ S = P t−1, then pure
randomization occurs by only performing random splitting
within P t−1. In general,∅ ⊂ S, Sc ⊂ P t−1, in which case the
newly generated coalition structureP t is non-intersectingthe
preceding oneP t−1 [8]. That is, define agent subsetM ′ ⊂ M

by M ′ = {i ∈ M : i ∈ A ∈ S}; thenP t is finer (coarser) than
P t−1 overM ′ (M\M ′).

As already mentioned, the proposed method mainly alter-
nates merging and splitting. In particular, consecutive pure ran-
domization cycles are not allowed. This means that if cyclet is
a pure randomization one, then either cyclet − 1 is a merging
one and cyclet + 1 is a splitting one, or else the opposite, i.e.
t − 1 is a splitting cycle andt + 1 is a merging one. Hence, if
cycle t − 1 wasnot a pure randomization one, thenα(t) ≥ α̂

implies that cyclet is a pure randomization one. But if cycle
t − 1 was a pure randomization one, then independently from
the value ofα(t) cycle t shall be a merging or else a split-
ting one depending on whether cyclet− 2 was, respectively, a
splitting or else a merging one.

Both merging and splitting cycles also heavily rely upon
randomization, but in a very biased fashion, where the bias
obtains by means of the available information: the (dynamic)
CF form and the worth of blocks of generated partitions (which
completely disregarded by pure randomization cycles).

Merging. Merging cyclest start as above, that is, by com-
puting the global worthw(P t−1) of partition P t−1 inherited
from the past andα(t) ∈ [ǫ, 1−ǫ] accordingly. Next, a random
subsetS ⊆ P t−1 of P t−1’s blocks is obtained by generating a
random realαk ∈ [0, 1] for eachAt−1

k ∈ P t−1 and then set-
ting S = {At−1

k ∈ P t−1 : αk ≤ α(t)}. For notational conve-
nience,S = {A1, . . . , A|S|}, with random labeling1, . . . , |S|
of coalitionsA ∈ S. At this point, superadditivity of the un-
derlying coalitional games or CFsvt, t ≥ 0, (assigning worths
to coalitions) over thefield 2S is used in order to assess the
more profitable merging withinS. After computingvt(A1)

|A1|
, if

bothvt(A1∪A2) > vt(A1)+vt(A2) and vt(A1∪A2)
|A1|+|A2|

>
vt(A1)
|A1|

are true, thenB1 = A1 ∪ A2; otherwise,B1 = A1. In any
case, forA3, if both vt(B1 ∪ A3) > vt(B1) + vt(A3) and
vt(B1∪A3)
|B1|+|A3|

>
vt(B1)
|B1|

are true, thenB1 = B1 ∪A3. In any case,
it is next checked whether mergingB1 ∪ A4 is profitable or
not in the same way, and this continues until reachingA|S|, at

which point some∅ 6= B1 ⊆ S (with, possibly,B1 = A1) will
be given. This is reiterated withinS1 = S\{Ak : Ak ⊆ B1},
and then again withinS2 = S1\{Ak : Ak ⊆ B2}, and so on,
until Bh is such thatSh−1\{Ak : Ak ⊆ Bh} = ∅. The new
partitionP t is now generated as follows: ifAt−1

k ∈ P t−1\S,
thenAt−1

k ∈ P t; otherwise, eachBh ⊆ S resulting from the
above reiterated procedure satisfiesBh ∈ P t. Hence,P t co-
incides withP t−1 over agent subsetM\

(

∪
1≤k≤|S|

Ak

)

, while

each block of the partition of ∪
1≤k≤|S|

Ak is someBh resulting

from the above reiterated procedure.
Splitting. Splitting cyclest start as above, by computing

the global worthw(P t−1) of partitionP t−1 inherited from the
past andα(t) ∈ [α, 1 − α] accordingly, and then generating
a random subsetS ⊆ P t−1 of P t−1’s blocks exactly like for
pure randomization cycles, with larger blocks are more likely
to enterS = {A1, . . . , A|S|}, where the labeling1, . . . , |S| is
random again. For each coalition{i1, . . . , i|A|} = A ∈ S, with
random ordering1, . . . , |A| of agentsi ∈ A, setB = A and for
1 ≤ j ≤ |A|, if vt(B)−vt(B\ij) ≤ 0, then updateB = B\ij ;
otherwise, stop. Hence, for some random order of agents inA,
it is iteratively checked if theirmarginal contributionyields
vt

(

A\
(

∪
1≤h<j

ih
))

≤ vt

(

A\
(

∪
1≤h≤j

ih
))

. When reaching the

very first agentij∗ whose marginal contribution is strictly pos-
itive the procedure stops. Next, the newly generated partition
P t coincides withP t−1 over the subsetM\

(

∪
1≤k≤|S|

Ak

)

of

agents (as for the previous merging cycle), while each blockof
the partition of ∪

1≤k≤|S|
Ak is either of the formA\

(

∪
1≤h<j∗

ih

)

,

or else it is a 1-cardinal block{ih} with ih ∈ A andh < j∗,
for someA ∈ S.

5. Simulation environment

Merge & split being designed for the dynamic CF form sce-
nario, in order to test it through our simulation model COALA
[2], some time-varying CFsvt : 2M → R+, t ≥ 0 is needed. It
is chosen to be such that at eacht the worth of optimal coalition
structures is easily determined. This is achieved by means of a
double-peaked (i.e. displaying two maxima, a global and a lo-
cal one) and bi-symmetric (i.e. with the population partitioned
into two types and the worth of coalitions depending only on
members’ type) CF. Recall once again that such a maximum
worth is not an information available for coalition structure
generation, but it is crucial for evaluating the performance.

Double-peaked and bi-symmetric CFs. Consider the set
Dm = {m∗ : m

m∗
∈ N} 6= ∅ of divisors of the number

m of agents. For the simulations, two (random) sequences
m∗

t ,m
∗∗
t ∈ Dm are generated, withm∗

t ≤ m∗∗
t for every t.

ForA ∈ 2N andm∗
t ,m

∗∗
t ∈ Dm, let A∗

t := {i ∈ A : i < m
m∗

t

}

andA∗∗
t := {i ∈ A : i < m

m∗∗

t

}, wherem∗
t ≤ m∗∗

t clearly
impliesA∗∗

t ⊆ A∗
t . The worthvt(A), t ≥ 0 is

vt(A) =
|A|2

1 + min{λ∗
t (A), λ∗∗

t (A)}
for all A ∈ 2M , (3)

whereλ∗
t (A) := (|A| −m∗

t )
2 + (|A∗

t | − 1)2 and, analogously,
λ∗∗

t (A) := (|A| − m∗∗
t )2 + (|A∗∗

t | − 1)2.
The setting is dynamic, of course, asm∗

t ,m
∗∗
t change in

time. In particular, at anyt optimal coalition structures are
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m
m∗∗

t

-cardinal, each of their blocks ism∗∗
t -cardinal and con-

tains precisely one agent with identifieri < m
m∗∗

t

, so that the
associated global worth ism

m∗∗

t

· (m∗∗
t )2 = m · m∗∗

t . This CF
form is useful to test the generation process in the tricky dy-
namic scenario where changes of the CF, occurring at generic
timest′, obtain by settingm∗∗

t′ = m∗
t′+1. In words, whenever

they occur, changes do not lead to a fall in the the worth of
previously optimal coalition structures. Yet, after changes oc-
cur such previously optimal coalition structures correspond to
local rather than global maxima. Thus, CF changes (and novel
optimal coalition structures) are harder to detect (and find).

At any stept, the number of optimal coalition structures is

∏

0≤k≤ m

m∗∗

t

−1

(m− m

m∗∗

t

−k(m∗∗

t
−1)

m∗∗

t
−1

)(

m
m∗∗

t

− k
)

(

m
m∗∗

t

)

!
, (4)

which might seem large, making it simpler to generate near-
optimal coalition structures. Still, from a game-theoretical per-
spective the case with many (Pareto) optimal outcomes is not
trivial at all, modeling the situation where achieving optimality
is not hard because of strategic matters but for the likelihood
of coordination failure [15].

Performance evaluation. The designed and implemented
simulation model is based on the GAIA framework and the
ARTÌS middleware [1]. The approach relies on the parallel and
distributed simulation technique, specifically the ARTÌS mid-
dleware provides the simulation engine and the GAIA frame-
work, that is based on dynamic reallocation of simulated model
entities, enhances the simulation efficiency, increasing the sim-
ulator’s scalability and performance [6]. These high perfor-
mance tools allow for a wide variety of simulations, with large
number of agents and very complex simulated models. In any
case, dynamic coalition structure generation constitutesa novel
complex setting where to work with such tools.

The following two figures present, respectively, the worth
of generated coalition structures and the average cardinality
of blocks. In particular, the worth of each generated coalition
structure is divided by the worth of optimal coalition struc-
tures, that is known beingm · m∗∗

t at each stept. This ratio
is namednormalized Global Worth(GW), which seems most
naturally plotted together with the exploration parameterα, so
to check whether changes of the CF are actually detected and
how the algorithm behaves accordingly. Moreover, in the same
figure the historical mean GW is also plotted, which is useful
to depict the trend of the simulated scenario. In the companion
figure two further ratios appear: the currentm∗ andm∗∗ both
divided by the maximumm∗∗ generated during the simulation
itself. This enables to check the speed at which coalitions tend
toward the optimal cardinality and, when such an optimal car-
dinality is not reached, on what average cardinality coalitions
tend to stabilize. In this simulation environment a population
of m = 104 agents is considered; more populated environ-
ments will be considered in the future. Figures 1 and 2 show
a simulation of the dynamic CF form scenario defined by ex-
pression (3) above. The two randomly generated sequences of
divisors of104 (with m∗

t ≤ m∗∗
t as desired, see above) are

m∗
t = 4, 10, 25, 10, 20, 40, 100, 20, 10, 25, 50, 20, 100, 10, 25,

50, 4, 10, 25, 50 andm∗∗
t = 10, 20, 50, 25, 40, 100, 500, 25,

Fig. 1.Normalized GW andα with 104 agents andm∗,m∗∗

randomly varying every 500 time steps.

Fig. 2.Normalized average cardinality of coalitions and
normalizedm∗,m∗∗ with 104 agents andm∗,m∗∗ randomly

varying every 500 time steps.

100, 50, 100, 100, 500, 20, 100, 200, 100, 25, 50, 100, with each
value applying to a 500 step interval. In the former figure
the continuous black line shows the behavior displayed by
α(t) ∈ [α, α] ⊂ [0, 1]. In order to obtain a[0, 1]-ranged plot
for the worth of generated coalition structuresP t ∈ PM , t ≥ 0
as well, the dotted light gray line shows

normalized GW(t) :=
∑

A∈P t

vt(A)

m · m∗∗
t

=
wt(P

t)

m · m∗∗
t

, (5)

with vt(A), A ∈ 2M defined by expression (3) above.
It may be immediately noticed that the historical mean GW

(that is, the average performance over time) is steadily around
60% of the worth of optimal coalition structures (see Figure 1,
dotted dark gray line). This seems satisfactory given that the
system is rather dynamic and in several simulation intervals
the average cardinality of coalitions is closer tom∗ than to
m∗∗ (see Figure 2, continuous black line). Inspection of step
interval 2000-3000 reveals that the exploration parameterα

behaves properly: as long as the GW (see Figure 1, dotted light
gray line) falls over time,α keeps increasing until an optimum
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is reached, although this latter is only a local one (see Figure
2, 3000-3500 time-steps).

An overall inspection of normalized GW vsα(t) leads to
conclude that the noise around optimal coalition structures is
higher when the cardinality of optimal coalitions (i.e. blocks) is
smaller. In fact, there is a trade-off: larger optimal blocks take
longer to be reached but the generation process is also more
stable, while when optimal coalition structures consist ofmany
small blocks (i.e. whenm∗∗

t is smaller) generated partitions get
closer to optimal ones faster, but their volatility is higher. In
general the overall performance seems satisfactory given the
rather challenging scenario under concern.

6. Concluding remarks and future developments

In dynamic coalition structure generation, at any time the
solver can choose what partition to generate at that time, but
only knows the worth of all previously generated partitions,
and aims at maximizing the generated stream of worth over
a finite or (countably) infinite time horizon. Such a minimal
available information identifies the dynamic non-CF form sce-
nario, while in the dynamic CF case the worth of partitions is
known to be given by the sum of their blocks’ worth according
to some (unknown) time-varying underling CF or coalitional
game. This latter is the environment where the merge & split
adaptive coalition structure generation process has been de-
signed and tested through simulations.

In the chosen setting, the available information is intrinsi-
cally incomplete and, in particular, never sufficient for observ-
ing the actual CFvt assigning worths to coalitions or blocks at
time t. In fact, this latter is a2m-dimensional vector, but one
always observes only the|P t| worths of P t’s blocks, while
the remaining2m − |P t| coordinates ofvt remain unknown.
Hence, no attempt is made to learn the time-behavior of the
underlying CF.

Given any partitionP t at anyt, merge & split basically de-
votes cyclet + 1 to searching for some best partitionP t+1 in
a neighborhood ofP t. This search is always stochastic, in that
the collection of partitions inP t’s neighborhood that are ac-
tually explored is determined through (biased) randomization,
alternating two main exploration directions: coarsening or else
refining the partition generated by the preceding cycle. Merg-
ing cycles only explore some partitions (weakly) coarser than
the previous one, and the output is a new partition worth no
less than the previous one. Splitting cycles only explore some
partitions (weakly) finer than the previous one, and the output
is a new partition worth no less than the previous one. This al-
ternation is interrupted by sufficiently large falls in generated
worth, as these latter lead to pure randomization cycles, within
which no search whatsoever is performed: the output is some
new partition (in general neither coarser nor finer that the pre-
ceding one) generated independently from the attained worth.

The general idea behind merge & split seems adaptable to
the dynamic non-CF form scenario, where one only observes
the worth of generated partitions, and not the worth of their
blocks as well, although this would definitely require some
relevant changes. Yet, borrowing from cooperative game the-
ory, an intermediate possibility (i.e. still more similar to the CF
form) is represented by games in PFF (partition function form).

They are (poset) functions taking values onembeddedpairs,
namely, pairs consisting of a partition and a coalition suchthat
the former embeds the latter as one of its blocks [14]. Con-
cretely, this sophisticates the dynamic CF-form scenario con-
sidered thus far by assuming that the solver may observe the
worth of generated blocks although such a worth may well vary
depending on what generated partition embeds the block (static
coalition structure generation in PFF is addressed in [18]).
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