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Abstract. The simulation is useful to support the design and perfor-
mance evaluation of complex systems, possibly composed by a massive
number of interacting entities. For this reason, the simulation of such
systems may need aggregate computation and memory resources ob-
tained by clusters of parallel and distributed execution units. Shared
computer clusters composed of available Commercial-Off-the-Shelf hard-
ware are preferable to dedicated systems, mainly for cost reasons. The
performance of distributed simulations is influenced by the heterogene-
ity of execution units and by their respective CPU load in background.
Adaptive load balancing mechanisms could improve the resources uti-
lization and the simulation process execution, by dynamically tuning
the simulation load with an eye to the synchronization and communica-
tion overheads reduction. In this work it will be presented the GAIA+
framework: a new load balancing mechanism for distributed simulation.
The framework has been evaluated by performing testbed simulations of
a wireless ad hoc network model. Results confirm the effectiveness of the
proposed solutions.

1 Introduction

The simulation is useful to support the design and performance evaluation of
many complex systems of interest, often composed by a massive number of in-
teracting entities. For a significant performance evaluation, many complex sys-
tems would require the implementation of fine-grained models able to include
many factors and to capture many causal effects, at many layers of abstraction.
Simulation techniques support layered model composition, arbitrarily complex
models and fine-grained details [10]. Limitations are mainly given by the long
time required to complete the simulation processes, and by the resource con-
straints of the execution architectures (like computation-power and memory). In
the classical approach, computer simulation is monolithic, that is, a single pro-
cess execution manages one simulation and mimics the evolution of the model
state variables. Given the limited amount of memory resources to represent the
model data structures, and the limited computation power that can be provided
by a single execution unit, the simulation model scalability may be significantly
constrained under the monolithic approach. In addition, the time required to
complete a simulation analysis over a single Physical Execution Unit (PEU)
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could be long enough to make less practical the analysis. To deal with these
limitations, an alternative approach is based on the Parallel and Distributed
Simulation (PADS).

In PADS, the model execution is supported by many interacting processes,
possibly executed in concurrent way over multiple PEUs, and usually referred to
as Logical Processes (LPs) [1]. One or more LPs can be executed over different
PEUs. The simulation is obtained as the coordinated, concurrent, distributed
execution of LPs. In general, frequent synchronizations are required between
computation steps of distributed LPs, to ensure a correct simulation execution.
To summarize, with PADS it is possible to use an arbitrary number of PEUs,
by aggregating the available memory and the computation power resources of
shared clusters. This increases the model scalability supported by the simula-
tion architecture. On the other hand, new bottlenecks are originated under the
distributed coordination, synchronization, and communication viewpoints [6]. A
typical cluster-based execution architecture for distributed simulation can be a
dedicated cluster with homogeneous units, or a cluster of heterogeneous PEUs,
connected by a computer network. Heterogeneity is intended here in terms of
PEUs’ performance characteristics, available resources, and background load. In
shared clusters, the effect of load given by unpredictable background-processes
may drastically influence the simulation execution performance. This can be
avoided in High Performance Computing (HPC) clusters, that can be reserved,
resulting more effective than shared clusters in their resource/performance ra-
tio. On the other hand, shared clusters are cost-effective solutions, because they
are made by commercial off-the-shelf (COTS) hardware, possibly deployed for
students labs, personal workstations and other computing facilities. In this case
the execution units can be really heterogeneous, the CPUs can range from entry
level up to bleeding edge models, and the communication network can be a high
speed LAN up to the Internet. Being shared between a community of users, it is
realistic to assume the presence of variable background load, both for the CPUs
and for the interconnection networks.

Typically, in PADS each LP manages a subset of the Simulated Model Entities
(SME). Intuitively, a SME is a single model component (object) of the simulation
model characterized by a state (data structure) and a behavior (methods). The
amount of SMEs managed by a LP has some direct relationship with the compu-
tation time required between two successive synchronizations involving LPs. To
realize load balancing, the number of SMEs allocated over LPs, should depend
on the available resources of the PEUs where LPs are executed. A static allo-
cation of the SMEs realized without considering the dynamic SME interactions,
and the dynamic background computation and communication loads, could re-
sult in dynamic unbalancing of LP executions. The time required to complete
the simulation runs, usually referred to as the Wall-Clock-Time (WCT), is the
metric used for the analysis of the simulation speed. The computation load can
be balanced between PEUs, by migrating SMEs from an overloaded PEU to an
underloaded PEU. The way to dynamically balance the distribution of compu-
tation over the available PEUs, should depend on realtime feedback of current
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load. This paper proposes and analyzes a distributed mechanism for load balanc-
ing based on the realtime adaptive migration of SMEs between LPs in a PADS
framework. The preliminary Generic Adaptive Interaction Architecture (GAIA)
proposed in [3] has been enhanced in this work, originating the new GAIA+
framework. GAIA+ takes simultaneously into account two main problems of
distributed simulation: the computation and communication load balancing is-
sues and the reduction of the communication overheads required to implement
the simulation. The two problems are strictly correlated and should not be ad-
dressed independently, in order to achieve consistent advantages and results. In
addition, GAIA+ introduces heuristics for supporting dynamic load-balancing in
simulations over COTS shared cluster systems, characterized by heterogeneous
PEUs, and unpredictable background computation and communication loads.

The paper structure is the following: in Section 2 some background concepts
and related works about load balancing and the distributed simulation are in-
troduced; in Section 3 we introduce a PADS framework that is adopted as the
basis for designing and implementing the GAIA+ load balancing solution; in
Section 4 we report some results obtained by the GAIA+ framework adopted
for a testbed wireless ad hoc system simulation. Finally Section 5 reports our
conclusions and future work.

2 Background and Related Work

The load balancing of parallel and distributed computations has been widely
investigated and evaluated. In the simulation field, specific solutions have been
proposed to distribute the simulation workload over the processors while re-
ducing the synchronization overhead. In most cases some knowledge is assumed
or inferred at compile time about the system and model workload parameters
[11]. Some works deal with the opposite assumption: in [6] a process migra-
tion mechanism is presented, that reduces the WCT of a parallel simulation.
The simulation approach considered is based on an optimized version of the
conservative Chandy-Misra synchronization scheme. The proposed mechanism
is dynamic and partially distributed. In [7] a stochastic learning automata en-
ables a communication flow control scheme that is used to balance loads in
optimistic simulations based on the Time-Warp synchronization algorithm [1].
All these mechanisms are based on the LP migration concept. In other words,
LPs are considered the smallest component that can be migrated for simulation
load balancing. In general, migrating and re-instantiating LPs between different
PEUs may have a significant overhead. Moreover, the adaptation obtained with
this approach is coarse grained with respect to the approach obtained by mi-
grating SMEs between LPs. GAIA+ mechanism will adopt the latter approach:
we assume the LPs are containers of SMEs, and the load balancing strategy is
based on the migration of SMEs between LPs executed over different PEUs.

To the best of our knowledge, our GAIA+ mechanism has the following dif-
ferences with existing solutions: it improves the computation load balancing
and, at the same time, it reduces the communication overheads between LPs by
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migrating SMEs [3]. In addition, the load balancing mechanism is fully dis-
tributed and manages heterogeneous hardware scenarios also in presence of
dynamic background load. The latter point represents the main innovation of
GAIA+ with respect to preliminary GAIA mechanism introduced in previous
works [3,4]. The potential for this innovation is twofold: it enables adoption of
COTS architectures by obtaining high performances and by improving the model
scalability, and it supports dynamically load balanced simulations without any
need for user level configuration.

3 The Adaptive Load Balancing Middleware

The High Level Architecture (HLA) is a general purpose architecture for sim-
ulation reuse and interoperability (IEEE Standard 1516) [2]. A HLA-compliant
simulation is realized by a set of federates, each federate is a software compo-
nent that interacts with other federates to form a simulation (federation). Given
previous definitions, a federate can be thought of as a LP and viceversa. Many
distributed federates can be composed to form simulations, whose interactions
are controlled through a distributed middleware called Runtime (RTI). Some
implementation criticisms and the lack of basic features as the built-in support
for migration-based load-balancing, are the main motivations behind the design
and implementation of a new RTI called ARTÌS (Advanced RTI System) [9].

3.1 ARTÌS

The Advanced RTI System (ARTÌS) is a middleware for Parallel and Distributed
Simulation (PADS) supporting high degree of model scalability [9]. The design
of the middleware is inspired by the IEEE 1516 standard, but new features have
been introduced to improve the scalability and the simulation performance. The
PADS execution speed is highly influenced by the communication performance:
the approach followed by ARTÌS is adaptive and exploits the characteristics
of the physical allocation of LPs [5]. ARTÌS supports both the conservative
(Chandy-Misra-Briant) and the optimistic (Time Warp) synchronization algo-
rithms. The load balancing mechanism that will be introduced in the following
sections is based on a conservative time-stepped synchronization scheme [3]. In
[4] it has been shown that the performances of a distributed simulation can be
increased by introducing the migration of the simulated entities (SME). A migra-
tion based middleware could optimize in adaptive way the simulation execution
by reallocating the SME over the LPs. The dynamic reallocation can reduce the
communication overhead and moreover can be exploited to improve the compu-
tation load balancing. This translates into a reduction of the Wall-Clock Time
(WCT) needed to complete the simulation runs. The Generic Adaptive Interac-
tion Architecture (GAIA) is a migration based framework integrated in ARTÌS.
The basic task of GAIA is to check the communication pattern of each SME dur-
ing the simulation execution. A set of heuristics evaluates the communication
pattern and triggers the SME reallocation to reduce the communication costs
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and to improve the load-balancing of the execution architecture. GAIA migrates
the highly interacting SMEs within the same LP, by reducing costly inter-LP
communication and by increasing the rate of low cost intra-LP communications.
The cost of migrating the simulated entities is a key factor to be evaluated in
the migration heuristics. An analytic evaluation of this cost is impossible due
to the network heterogeneity and the unpredictable behavior of the simulated
system.

3.2 GAIA+

The GAIA+ framework is an evolution of the migration mechanism defined
in [4]. GAIA+ has been designed and implemented to support the distributed
simulation over shared COTS clusters and to enhance the load balancing and
communication overheads’ reduction in presence of massive models of dynami-
cally interacting SMEs, heterogeneous execution architectures and unpredictable
computation and communication (background) loads.

3.3 The Heuristic Migration Policy Definition

The dynamic migration of SME may reduce the message-passing overhead by in-
troducing migration overheads: some analytical or heuristic metrics are required,
to be evaluated at runtime, to define “if” and “where” it would be profitable to
migrate a SME. The state size of a SME and the amount of “time-locality” of the
causal dependencies (LP-local message passing) between correlated SMEs, are
the most relevant parameters influencing the migration policy. Specifically, the
policy depends on the interaction rate between SMEs, and the overall load bal-
ancing policy between the PEUs. By focusing on the network communication-
reduction viewpoint, it would be optimal to allocate every SME on a single
PEU. Obviously, GAIA+ mechanism has to deal with computation load balanc-
ing too, hence the optimal policy would require to dynamically partition in sets
the most frequently interacting SMEs, by allocating each set over the available
PEUs in load-balanced way. The dynamic load balancing problem is even more
complicated by assuming that the CPUs are heterogeneous and subject to un-
predictable background load. GAIA+ implements a combination of two low-cost
heuristic schemes, that adaptively converge to a balanced solution, under the
system assumptions considered in the implementation. The rules for migration
heuristic are quite simple and have been improved with respect to the early
design of previous work in [3].

3.4 The Heuristic Load-Balancing Policy Definition

The steady state behavior of the migration heuristic in isolation would lead to the
asymptotic clustering of all the SMEs over a subset of the available PEUs. This is
because the adaptive effect of migrations is focused on the reduction of “external”
communication overheads. The migration heuristic must be composed with a
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computation load balancing heuristic. The load balancing strategy implemented
in the previous version of the GAIA framework and defined in [4] was based on
some common assumptions: i) each CPU executes one single LP, ii) all the PEUs
are homogeneous and every LP manages the same number of SMEs, iii) the
execution architecture is dedicated to the simulation and no external background
load can interfere with simulation load balancing.

The new version of the framework, GAIA+, has been designed to overcome
such limitations. Our previous experience with migration-based distributed sim-
ulations shown that a LP overcrowded by many SMEs may be a synchronization
bottleneck for the whole simulation. The general load balancing rule that gov-
erned the original GAIA migration heuristic allowed only balanced migrations
between LPs, in a three-phases migration procedure: in the first phase every
LP must claim the number of candidate migrations and their proposed destina-
tions; in the second phase the load balancing condition is evaluated, and in the
third phase all the migrations satisfying the load balancing rules are performed.
To remove the simplification assumptions described above, it is necessary to
introduce some special improvements. Every LP, at each simulation timestep,
checks the incoming communication queues to determine which LPs are slow
in reaching the synchronization. Some adjacent timesteps are observed to have
some confidence on the trends and behaviors of the system, by each LP. The col-
lected data represents a local-LP vision of the foreign-LPs simulation execution.
Such information is exchanged by LPs and managed by the distributed GAIA+
middleware components, locally to each LP. GAIA+ middleware infers a global
vision and marks the LPs as “slow” or “fast” with respect to the average simu-
lation speed. If the delay between the slow and the fast LPs is significant then
the load distribution is not adequate and GAIA+ breaks the adopted general
load balancing rule by triggering an unbalancing exception, that is, a part of the
load has to be migrated from the slow to the fast group of LPs. The unbalancing
exception allows the LPs marked as slow to migrate a number of SMEs to LPs
that are marked as fast, even if this would break the local balancing condition
of the involved LPs. However, the implementation of the exception is regulated:
the number of SMEs allowed to migrate (referred as migration set) is propor-
tional to the difference of speed between slow and fast groups. After defining
the size of the migration set, it is necessary to choose the SMEs that will be
migrated, and their destinations, in accordance with communication patterns
and the migration cost. The implementation of this mechanism has to satisfy a
few essential requirements: i) it should quickly adapt to heterogeneous hardware
with very different CPUs and network performances, ii) it should quickly adapt
to variations of the background load (both computation and communication),
iii) it should converge without introducing harmful fluctuations. For the sake of
simplicity, in our analysis we assumed that all the SMEs are equivalent in terms
of computation-cost per timestep. This assumption is quite common in many
simulation models, e.g. in considered wireless ad hoc network models (section
4). If the assumption is not satisfied, the load estimate characterizing each SME
has to be taken into account as additional parameter of the heuristic evaluation.
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4 Testbed Evaluation

Now we illustrate some key concepts of a testbed model of a wireless system. We
assume a high number of Simulated Mobile Hosts (SMHs, that is, the equivalent
of general SMEs considered in previous sections), each one following a Random
Waypoint (RW) mobility model. This mobility model is far from being real, but
this choice was driven by the unpredictable and uncorrelated mobility pattern of
SMHs. This is the worst case analysis for the GAIA+ mechanism, because any
heuristic definition cannot rely on any assumption about the motion correlation
and predictability of SMHs. Space is modeled as a torus-shaped 2-D flat topology,
10.000x10.000 space units, populated by a constant number of SMHs. The torus
space topology, indeed unrealistic, is commonly used by modelers to prevent
non-uniform SMHs’ concentration in any area. The simulated space is without
obstacles. The modeled communication between SMHs is a constant flow of ping
messages (i.e. constant bit rate), transmitted by every SMH to all neighbors
within a wireless communication range of 250 space units.

4.1 Experimental Results

The first set of experiments were executed on a cluster of 3 heterogeneous PEUs:
two Dual Xeon Pentium IV 2800 MHz with 3 and 4 GB RAM, respectively, and
one Quad Xeon Pentium IV 1500 MHz with 1 GB RAM, connected by a Gi-
gabit Ethernet LAN. We performed multiple runs for each experiment, and the
confidence intervals obtained with a 95% confidence level are lower than 5% the
average value of the performance index shown. All the performed experiments
were initialized with a uniform pseudo-random distribution of 9000 SMHs over
a flat topology. The distributed simulation is composed by 3 LPs: each PEU

Fig. 1. Initially each PEU simulates the
same number of SMHs (3000)

Fig. 2. The initial allocation is based on
the CPU MHz of each PEU

manages the execution of one LP. Initially, all the SMHs are randomly and
uniformly allocated over the set of PEUs, that is, the model components’ alloca-
tion is not initialized in a scenario favorable to GAIA+ load-balancing (because
PEUs are not homogeneous) and communication-reduction of GAIA+ migration
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scheme (because modeled wireless hosts with time- and space-correlation are
randomly distributed over different PEUs). Testbed evaluation a): initially each
PEUs allocates the same number of SMHs (3000). All the PEUs are equipped
with same generation CPUs (Xeon Pentium IV) but with different clock speed
and memory: PEUs 1 and 2 have a 2800 MHz CPU with 3 and 4 GB RAM,
respectively, and the PEU 3 has a 1500 MHz CPU with 1 GB RAM. Given
the significant difference of speed, we expect that the GAIA+ mechanism will
modify the allocation of SMHs for load balancing, reducing the number of SMHs
allocated on the slow PEU 3 and increasing the population on the fast PEUs 1
and 2. Figure 1 shows that the expected transient behavior quickly converges to
a stable steady state condition, without introducing fluctuations in the number
of allocated SMHs. It appears that “fast” PEUs are not homogeneous in perfor-
mance, as it can be expected due to the difference in the amount of local RAM.
The same behavior is confirmed in the results presented in the following.

In the second approach b), the initial allocation was based on the nominal
performance of the PEUs. In practice, since CPUs are the same generation, it
would be possible to roughly allocate the computation load (homogeneous SMEs)
proportionally to the clock speed (expressed in MHz). Given this assumption, the
9000 SMEs should be allocated on the fast CPUs (2800 MHz) with 3552 SMHs
each, and the slow CPU with 1896 SMHs. In theory, this initial allocation method
should be stable under the load balancing viewpoint. Figure 2 demonstrates that
this assumption is not confirmed: the GAIA+ framework quickly reacts and
reaches a different steady state condition that substantially increases the load
on the “slow” PEU. This confirms that load balancing inferred by nominal CPU
performance index (like the CPU clock speed) is not adequate.

So far we have considered testbeds with no background load (that is, dedicated
cluster). In this case some benchmarks or preliminary simulation tests (like in
Figure 1 and 2) could determine a load balanced partition of the SMHs between
the execution units involved in the distributed simulation. As discussed in the in-
troduction, this assumption is often unrealistic, as an example with shared clus-
ters with unpredictable background load. In the following we perform some tests
of GAIA+ mechanism under the variable background load scenario: the consid-
ered system architecture is composed by three Intel Xeon Pentium IV, 2800 MHz,
with 2 (PEU1), 4 (PEU2) and 3 (PEU3) GB RAM, respectively. In scenario c),
we injected a synthetic load over the PEU 1, only. The background load of PEU
1 is shaped as a sinusoidal wave, that is, it is not unpredictable. On the other
hand, there is no exploitation of any predictability characteristic in GAIA+: we
used this curve because it gradually introduces load variation at different speeds
(that is, the derivative of the background load curve shows a variation of slow
changes followed by sudden changes). Our analysis goal is to verify the reaction
of GAIA+ in presence of slow and fast background load variations. In left-hand
figures 3 we show the background load of three PEUs involved in the distributed
simulation. The effect on the load balancing mechanism of GAIA+ can be seen
on right-hand figures 3: a SMHs re-allocation is realized by GAIA+, by following
the shape of the background load in reactive and dynamic way. The right-hand
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figures report the percentage of allocated SMHs with respect to the initial distri-
bution of 3000 allocated SMH per PEU (100%). SMHs migrated from overloaded
PEU1 are fairly re-allocated over PEU2 and PEU3.

Fig. 3. The effect of the injected background load on the SMHs allocation

These results demonstrate that GAIA+ mechanism can quickly adapt the
load partitioning of the SMEs from any initial distributions (e.g. random), and
by adaptively reacting to the background load variations. The communication
reduction ability obtained by GAIA+ is the same inherited by original GAIA,
as shown in [3]. In [3], we also shown that speedup was obtained by the GAIA
mechanism with respect to distributed and monolithic simulations. Now we show
that GAIA+ mechanism outperforms GAIA under the simulation speedup view-
point, by reducing the Wall-Clock-Time (WCT) required by simulation runs,
under new assumptions that characterize the shared clusters. We analyzed a
portion of the execution (1000 steady state timesteps) of the simulation runs of
the wireless ad hoc network model, for the three scenarios (a, b and c). Table
1 shows the WCT needed to execute the run portion: we refer to “GAIA+” as
a distributed simulation with the new GAIA+ load balancing mechanism en-
abled and “GAIA” when the old GAIA scheme is used. The results confirm our
expectations: the GAIA+ mechanism significantly reduces the WCT in all the
analyzed scenarios. The load allocation is quickly balanced over heterogeneous
execution scenarios, both in presence of sub-optimal initial allocations (a, b) and
in presence of variable background loads (c).

Table 1. WCT (seconds) to complete a simulation run of 1000 timesteps

scenario GAIA GAIA+ diff (%)

a 3600 3442 -4.38%
b 3983 3568 -10.41%
c 5232 4128 -21.10%
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5 Conclusions and Future Work

In this work we have described GAIA+, a migration-based framework build on
top of the ARTÌS middleware. GAIA+ exploits the runtime migration of simu-
lated model entities to concurrently address two main problems of distributed
simulation: the reduction of the communication overhead and the load-balancing
in the distributed execution architecture. The new GAIA+ framework introduces
support for shared and heterogeneous execution architectures possibly charac-
terized by background load. A distributed heterogeneous execution architecture
and a wireless ad hoc network model have been used as a testbed for GAIA+
analysis. The performance evaluation has demonstrated that the new heuristics
adopted in the GAIA+ middleware can lead to significant reduction in the WCT
required to execute the simulation runs.

Future works include new heuristics to address the presence of heteroge-
neous model entities with different computational requirements, and extended
testbed models. Most preliminary Grid-based simulations has revealed poor per-
formances mainly due to the high latency experienced by Internet communica-
tions and the lack of control on the nodes. We believe that the ARTÌS and
GAIA+ middleware porting on the Grid architecture could possibly contribute
to increase the performance of Grid-based simulations.
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