
Dottorato di Ricerca in Informatica

Università di Bologna e Padova

ARTÌS: Design and Implementation of an
Adaptive Middleware for Parallel and

Distributed Simulation

Gabriele D’Angelo

March 2005

Coordinatore: Tutore:

Prof. Ozalp Babaoglu Prof. Lorenzo Donatiello

Abstract

The simulation is a technique of primary importance in the design and verifica-

tion of systems and architectures. The parallel and distributed simulation has been

proved to reduce the time required to complete the simulation of some scenarios,

improve the code reusability, address the requests for fault-tolerance and support the

spatially located architectures. In the following of this thesis it will be presented

a new simulation middleware named Advanced RTI System (ARTÌS), designed to

support the parallel and distributed simulations of complex systems characterized by

heterogeneous and distributed model components. The runtime logical structure and

the implementation details will be described, some scenarios considered of interest

(i.e. ad hoc and sensor wireless networks) have been simulated as testbed evalua-

tion for the proposed middleware. Our effort to improve the simulation speed-up of

parallel and distributed simulation with respect to a sequential monolithic approach

has involved new features as the “simulated entities migration” and the “concurrent

replication” of simulation runs. Finally some concepts derived by our work with

ARTÌS will be applied to the design and implementation of a new middleware for

massively populated Internet Games.

iii

Contents

Abstract iii

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Problem statement . 2

1.2 Thesis contributions . 3

1.3 Outline . 4

2 Background 5

2.1 Parallel and distributed simulation 5

2.2 Synchronization algorithms . 8

2.2.1 Conservative approach . 9

2.2.2 Optimistic approach . 10

2.3 Data Distribution Management (DDM) 12

2.4 Parallel and distributed simulation of wireless networks 13

2.4.1 MAISIE . 13

2.4.2 PDNS - parallel/distributed ns 13

2.4.3 Scalable simulation framework (SSF) 14

2.4.4 Telecommunications Description Language (TED) 14

iv

2.4.5 SWiMNet . 14

2.4.6 GloMoSim / QualNet . 15

2.4.7 JiST / SWANS . 15

2.4.8 OPNET . 15

2.5 High Level Architecture (HLA) . 16

2.5.1 DMSO RTI . 17

2.5.2 RTI NG Pro . 17

2.5.3 Georgia Tech FDK . 17

2.5.4 MÄK RTI . 17

2.5.5 Pitch RTI . 17

2.5.6 XRTI . 18

2.5.7 OpenSkies Cybernet . 18

2.5.8 Chronos . 18

2.5.9 ERTI Mitsubishi Space Software Company 18

3 The ARTÌS Middleware 19

3.1 Introduction . 20

3.2 Motivation and preliminary discussion 22

3.3 The ARTÌS middleware . 26

3.4 Conclusions and future work . 29

4 Simulation of Large Scale Wireless Systems 31

4.1 Introduction . 32

4.2 Distributed simulation of wireless systems 35

4.3 The simulation execution testbed . 37

4.4 The distributed simulation framework 39

4.4.1 The advanced RTI system (ARTIS) 39

4.4.2 The generic adaptive interaction architecture (GAIA) 40

4.5 Wireless systems’ model definition . 41

v

4.5.1 The mobile Ad Hoc network’s model 41

4.5.2 The sensor network model . 43

4.6 Experimental results . 45

4.7 Mobile ad hoc network’s simulation 46

4.8 Sensor network’s simulation . 51

4.9 Conclusions and future work . 53

5 Concurrent Replication of PADS 54

5.1 Introduction . 55

5.2 Cloning and replication of PADS . 58

5.2.1 MRIP . 58

5.2.2 Parallel and distributed simulation 59

5.2.3 IPC communication for parallel and distributed simulation . . 60

5.2.4 Parallel and distributed simulation cloning 61

5.2.5 The concurrent replication of parallel and distributed simula-

tions . 63

5.3 The CR-PADS implementation . 66

5.3.1 Implementation of replication in ARTÌS 66

5.4 Performance evaluation . 70

5.4.1 Simulation system and simulation model 71

5.4.2 Performance results . 71

5.5 Conclusions and future work . 78

6 A Migration-based Architecture for Internet Games 79

6.1 Introduction . 80

6.1.1 Work motivation . 81

6.2 Online gaming architectures . 84

6.2.1 MMORPGs gaming architecture 85

6.2.2 Time management and fairness 86

vi

6.3 The gaming architecture model . 87

6.3.1 The model parameters . 87

6.3.2 The simulated network model 88

6.3.3 The server model . 93

6.4 The migration mechanism . 93

6.4.1 The migration heuristics . 95

6.4.2 The migration protocol . 97

6.5 Experimental results . 97

6.5.1 Simulation tool . 97

6.5.2 Simulation setup . 98

6.5.3 Performance results . 98

6.6 Conclusion and future work . 104

7 Conclusions 106

8 Acknowledgements 109

References 111

vii

List of Tables

6.1 Model parameter distribution of carriers and big ISPs 92

6.2 Model parameters distribution of gaming clients 93

6.3 Confidence intervals of play time variance (90-th percent confidence

level) . 102

viii

List of Figures

2.1 Time-stepped approach . 6

2.2 Event-driven approach . 6

2.3 A set of interacting Logical Processes (LPs) 7

2.4 A set of interacting Physical Execution Units (PEUs) 7

3.1 Logical architecture of the ARTÌS middleware 27

4.1 A snapshop of a Mobile Ad Hoc network with 1000 SMHs dynamically

allocated by GAIA over 3 PEU. Dot colors define the PEU where the

SMH is executed. 42

4.2 A snapshot of a wireless sensor network with 1000 sensors. Dot col-

ors refer to sensor state: red=active, green=power saving, white=

listening. 44

4.3 A snapshot of a wireless sensor network with 1000 sensors while prop-

agating an alert message. 44

4.4 Transient number of GAIA migrations per timestep, with respect to

modeled mobility parameters. 47

4.5 Transient percentage of local communications per timestep, with re-

spect to modeled mobility parameters, with and without GAIA mi-

gration. 48

4.6 Transient speed-up effect over ARTÌS with and without the GAIA

migration mechanism. Average SMH speed: 10 m/s. 49

ix

4.7 Transient speed-up effect over ARTÌS with and without the GAIA

migration mechanism. Average SMH speed: 25 m/s. 50

4.8 Speed-up investigation of ARTÌS and GAIA over many execution

system architectures. 51

4.9 Speed-up and scalability investigation of ARTÌS for a massive sensor

network model. 52

5.1 The ARTÌS architecture. 66

5.2 The ARTÌS and Replication architecture. 67

5.3 Parallel and distributed CR-PADS architecture. 68

5.4 total WCT vs. Number of runs (replications) Parallel simulation

scenario: M=1, N=2, 500 SMHs. 73

5.5 Total WCT vs. Number of runs (replications) Parallel simulation

scenario: M=1, N=2, 1000 SMHs. 74

5.6 Total WCT vs. Number of runs (replications) Parallel simulation

scenario: M=1, N=2, 2000 SMHs. 74

5.7 Total WCT vs. Number of runs (replications) Distributed simulation

scenario: M=3, N=6, 500 SMHs. 75

5.8 Total WCT vs. Number of runs (replications) Distributed simulation

scenario: M=3, N=6, 1000 SMHs. 75

5.9 Total WCT vs. Number of runs (replications) Distributed simulation

scenario: M=3, N=6, 2000 SMHs. 76

5.10 Analysis of event processing rate. 77

5.11 Analysis of network communication throughput. 77

6.1 An example of the network areas . 90

6.2 Latency inside the GARR Network [8] 91

6.3 Latency between the GARR Network and the Teleglobe Network . . . 91

x

6.4 Distribution of clients over average play time values: simple migration

vs. no migration . 100

6.5 Dynamic estimated variance of the play time values (ms) 101

6.6 Runtime average play time values (ms) 101

6.7 Average of play time values move by move 103

6.8 Dynamic estimated variance of the play time values (ms), simple vs

early migration . 104

6.9 Distribution of clients over average play time values, simple vs early

migration . 105

xi

Chapter 1

Introduction

During last years, simulation has step by step gained an increased importance in

design and verification of systems and architectures. Interesting systems are often

complex but, mainly in the past, their evaluation was conditioned by inadequate

computational capabilities. Sometimes the resulting approach was an oversimplified

conceptual model: a first step in direction of partial or wrong results. Hence, tools

used to build simulators are of primary importance in the design and implementation

of complex systems.

The simulation oriented analysis of some systems is well fitted for an approach

based on Parallel And Distributed Simulation (PADS). The traditional sequential

monolithic approach is often inadequate to complete the simulation execution. The

monolithic approach limitations often are due to limited resources (i.e. system

memory) or to the excessive amount of time necessary to complete the runs. As

remarked in [48, 49] the distributed computation is not always favorable in terms of

performance. Highly interactive dynamic environments are difficult to simulate on

a distributed architecture, often the generic solution is based on oversimplified in-

teraction filtering mechanisms. Defining the terminology, it will referred as “parallel

simulation” each architecture where two ore more Physical Execution Units (PEUs)

are interconnected by a low latency communication bus (i.e. SMP shared memory

Chapter 1. Introduction 2

systems). Conversely it will referred as “distributed simulation” each architecture

based on a set of loosely-coupled PEUs, interconnected by a high latency network

(i.e. LAN, WAN, Internet).

The PADS techniques obviously have drawbacks, the load sharing is not always

easy or feasible, the load balancing between the set of PEUs running the simulation

is usually a difficult to solve problem. The speed-up obtained by load balancing can

be worn away by the communication overhead necessary to preserve synchronization

in the simulation cluster. Traditionally, a big amount of research work has been done

in the field of synchronization and data distribution management (DDM) to reduce

the communication overheads, increasing the PADS speed-up with respect to the

monolithic approach.

In the real world, the exploiting of PADS techniques is not a news, a large set of

communities has shared knowledge and experiences directly or indirectly related to

the parallel and distributed simulation field. Hence, during the last decades, a lot

of simulation tools has been developed and deployed: some tools are proprietary,

other are in some way more “open”. In 2000 the need for a common definition for

distributed simulation has been satisfied with the High Level Architecture (IEEE

1516) standard approval.

1.1 Problem statement

The definition of a well designed standard is a grow and unification factor for the

distributed simulation field, but a lot of runtime middleware implementations (RTI)

standard compliant have proved to have unsatisfactory performance.

Some scenarios considered of high relevance are extremely dynamic and massively

populated (i.e. ad hoc and sensor wireless networks). This kind of simulations is

uneasy to run efficiently in a distributed environment based on traditional data

filtering techniques. The communication overhead caused by the simulation of mas-

sively dynamic environment would nullify the gain obtained by the load distribution.

Chapter 1. Introduction 3

The wireless networks topology is really dynamic with respect of time evolution and,

static pre-allocation would become sub-optimal in a few timesteps.

The actual IEEE 1516 standard definition is totally missing the “simulated en-

tities migration” paradigm, that in our opinion could be valuable to improve the

overall simulation speedup. Moreover the standard is really complex to implement,

to learn and to use and so unsuited for environments requiring a simpler approach.

1.2 Thesis contributions

In order to overcome these problems, we analyzed the current situation of the com-

monly used runtime implementations and we proposed a new framework named

Generic Adaptive Interaction Architecture (GAIA) devoted to externally introduce

“simulated entities migration” capabilities to an unmodified release of the DMSO

HLA runtime [49].

The evolution of our work described in [48, 49] and of the testbed experiences

in [48] are the main topic of this thesis. Our research work in the field of parallel

and distributed simulation was started with at least two main goals: good perfor-

mances and improved usability. The most important side-effect of our research is

the design and implementation of a new simulation middleware named Advanced

RTI System (ARTÌS), designed to support parallel and distributed simulations of

complex systems characterized by heterogeneous and distributed model components

[45]. The ARTÌS design is oriented to support the model components heterogeneity,

distribution and reuse, and to increase the simulation performances, scalability and

speed-up, in parallel and distributed simulation scenarios.

The ARTÌS middleware has been the basis for an extensive work on perfor-

mances, involving dynamic adaptation of the interprocess communication layer and

concurrent replication of parallel and distributed simulation. Another topic of fur-

ther research was the “simulated entities migration” paradigm, in this case directly

applied within the ARTÌS middleware, obtaining an integration of the GAIA frame-

work and our new middleware [47].

Chapter 1. Introduction 4

The aim of this thesis is to discuss our researches in the field of parallel and

distributed simulation. To describe the design and implementation of ARTÌS and to

analyze the performance results obtained during the simulation of some interesting

wireless networks (i.e. ad hoc and sensor) [46]. This thesis will also describe how

some paradigms as “simulated entities migration” and “concurrent replication of

runs” can be valuable to achieve a better speed-up in the simulation execution.

Finally we will see as Internet Gaming architectures and PADS are quite related

to share some important concepts and techniques. Taking inspiration from our

simulation-related work we have been able to introduce an improved architecture to

support massively populated Internet Games.

1.3 Outline

The rest of this dissertation is organized as follows. Chapter 2 recalls some back-

ground concepts about Parallel Discrete Event Simulation (PDES). This chapter

is intended as an introduction to the basic notions needed in the rest of the thesis.

Chapter 3 describes the motivations, the internal logical architecture and implemen-

tation of ARTÌS, a new middleware for parallel and distributed simulation. Chapter

4 contains some examples of how ARTÌS can be used to implement real simulations

of large scale wireless systems (ad hoc and sensors networks). Chapter 5 introduces

the Concurrent Replication of Parallel and Distributed Simulations (CR-PADS) ap-

proach to reduce the Wall-Clock-Time (WCT) necessary to complete simulations.

Chapter 6, starts from the distributed simulation foundations and shows that a

class of Internet games can be seen as a kind of simulations where some constraints

could be relaxed. The chapter proposes a new middleware architecture to support

massively populated Internet Games. The concluding chapter summarizes the main

results of this thesis, and discusses the future work.

Chapter 2

Background

“There are more things in heaven and earth, Horatio, than are dreamt of in

your philosophy.”

William Shakespeare, Hamlet

A simulation is a system that represents or emulates the behavior of another

system over time. In a computer simulation the system doing the emulating is a

computer program [78]. In a very simplified form a computer simulation can be seen

as a set of evolving state variables. The evolution of state variables over time can be

managed with different timings. Time flow mechanism are continuous or discrete,

in this thesis we are interested in the following: state variables will be updated at

discrete points in the simulation time. The simulation advance of time can be time-

stepped or event-driven, in the first case the simulation state is updated every a

fixed amount of time (Figure 2.1), in the last only in presence of events (a “change”

happens in the simulation) the state variables are updated (Figure 2.2).

2.1 Parallel and distributed simulation

The state variables evolution and the events computation can be managed in a

sequential monolithic approach or in a decentralized way. In the last case we will

refer to parallel or distributed simulation. If the simulation is executed by a set

of Physical Execution Units (PEU) interconnected by a low latency network (i.e.

Chapter 2. Background 6

Figure 2.1: Time-stepped approach

Figure 2.2: Event-driven approach

Chapter 2. Background 7

Figure 2.3: A set of interacting Logical Processes (LPs)

Figure 2.4: A set of interacting Physical Execution Units (PEUs)

shared memory multiprocessor), we will refer to a parallel simulation. Conversely

in presence of a high latency network (i.e. LAN, WAN, Internet) we will refer

to a distributed simulation. The physical system can be viewed as a collection of

physical processes (executed on a set of PEUs) that interact in some fashion with

each physical process being modeled by a logical process (LP) [78]. Each LP is

usually executed by a single PEU, the interactions are performed exchanging time

stamped messages.

Chapter 2. Background 8

2.2 Synchronization algorithms

In a centralized system the notion of time is strictly defined, generated events can

be easily processed following a total ordering thanks to the CPU clock, assumed as

main reference of timing. A distributed environment has not a single reference clock

but a pool of CPU clocks subjected to skews and different speeds. Without defining

any notion of ordering and synchronization the simulation semantics would be dif-

ferent depending if the simulation is executed on a single processor environment or a

distributed system, it is need a set of constraints to preserve the original semantics.

In a distributed architecture two event can be in a dependency order while processed

on different CPUs, Lamport [95] has introduced the “happens before” relationship

that is defined as follows:

• if E1 and E2 were generated in the same logical process and in sequence E1 is

before E2 then “E1 happens before E2”;

• if E1 is the event of sending a message from LP A to LP B and E2 is the

receiving event then “E1 happens before E2” (in other words sending a message

is time consuming);

• the “happens before” relationship is transitive.

The Lamport’s “happen before” relationship defines a partial ordering in the

set of events. In this environment two events are “casually ordered” if the Lam-

port’s relationship is true, else they are “concurrent events”. It important to note

that “concurrent events” can be processed in parallel and “causally ordered” events

have to be processed sequentially, introducing a form of synchronization between

the distributed processing units involved in the whole simulation. The defined par-

tial ordering between events permits to improve the simulation speed processing in

parallel the events that are not involved in a causally ordered relationship. Tradi-

tionally a great amount of research has involved the synchronization algorithms, it

is required the guarantee that in centralized and distributed environments it will

be obtained exactly the same simulation results, but this goal can be achieved in

Chapter 2. Background 9

radically different manners. The main approaches to this problems are two: conser-

vative (pessimistic) and optimistic algorithms, based on opposite assumptions. In

following I will sketch both approaches, for a complete reference, the work referred in

[108] represents a dated but still valuable survey about synchronization and related

topics.

2.2.1 Conservative approach

The most widely used conservative synchronization algorithm is the “Chandy-Misra-

Bryant” (CMB). The overall simulation is decomposed in a set of units called Logical

Process (LP), each LP manages the evolution of one or more simulated entities.

The communication between simulated entities occurs through message passing, the

timestamped messages are sent over reliable communication channels. The set of

defined channels is static with respect of the simulation evolution, each channel

interconnects a pair of LPs and it is not only reliable but also preserves the message

order.

The CMB algorithm needs to determine “safe” events, an event is defined as safe

when its computation will not bring to violations in the local causality constraint.

In a conservative algorithm a processor is not permitted to execute an event until it

is certain to not receive a message in its past [108]. A logical process can verify this

condition if and only if each incoming channel (queue) contains at least one message.

The messages arriving in each receiving channel are enqueued in timestamp order,

and so it is easy to verify that the message with the minimum timestap is safe

and can be immediately processed. If during the simulation execution a channel

queue becomes empty then the algorithm can not determine what is the minimum

timestamped message that could be received from the empty channel and obviously

can not calculate a global minimum. In absence of safe event to process, the LP has

to wait until all channels contains at least one message. This waiting condition can

produce a LPs circular wait and a deadlock situation where all the LPs are starving,

waiting for new messages. The NULL message is a special message that usually does

not contain any model-related data, it is useful only to support the simulated time

Chapter 2. Background 10

advancement. Every time a LP advances its simulated time, or a new outbound

message is sent, the LP generates also a set of NULL messages sent to all neighbors.

Thanks to NULL messages, the logical process is able to compute a new lower

bound on messages that could be received from neighbors, advancing the computa-

tion. Introducing the NULL messages has permitted to break the circular waiting

but the overhall number of sent messages was greatly increased. Thanks to this ver-

sion of the conservative algorithm, the empty queues problem has been solved but

the algorithm is still prone to livelock: all LPs could be exchanging timestamped

NULL messages but the simulation time at each round could remain unchanged. To

solve this further problem it was introduced the lookahead value, in [78] it is defined

as: “if a logical process at simulation time T can only schedule new events with time

stamp of at least T +L, then L is referred to as the lookahead for the logical process”.

Thanks to the lookahead value and NULL messages combination it is possible to

break this livelock, in each round the simulated time will be for certain incremented.

The legacy CMB algorithm is unable to simulate systems where the lookahead is

equal to zero. Another main drawback of this algorithm is the big influence of the

lookahead value over simulation performances, small lookahead values imply a large

number of NULL messages sent on the communication network, increased overhead

and general communication latency. Another drawback of this approach is due to

the lookahead semantic, determining its value is strictly dependent by the simulated

model and can not be generalized.

2.2.2 Optimistic approach

In the optimistic approach determining if an event is safe is no more necessary. The

first proposed and most diffused optimistic synchronization algorithm is called Time

Warp and has been proposed by Jefferson [91]. In the local control mechanism of

this algorithm each LP executes all the enqueued events in timestamp order but

without any “safe check”: in absence of any form of synchronization the arrival of a

message with a timestamp in the past (called straggler message) can happen. The

optimistic approach is based on the assumption that causality violations are quite

Chapter 2. Background 11

rare and that is better to manage the violations consequences instead of paying extra

overhead to avoid them.

To repair the causality violations it is necessary to roll-back the LP state vari-

ables, this operation does not only involve undoing modifications to the local state

variables but also unsending messages. The old computation performed by the LP,

now based on wrong state and arrived messages, may have produced a set of further

messages spread all over the network to other LPs. To rollback not only the local

LP state but also the whole simulation it is necessary to “unsend” such wrong mes-

sages and this is managed by anti-messages. The payload of anti-messages is the

same of the corresponding positive message but with opposite mark, anti-messages

are used to annihilate still unprocessed positive messages or to cause the roll-back

of other LPs. Often the arrival of a straggler message determines a storm of anti-

messages and state roll-backs all over the distributed simulation. This domino effect

will propagate only into the simulated time future (starting from the straggler event

timestamp) and so it will not happen a whole simulation cancellation. When the

storm is over, all the simulation is now back to a consistent state and the LPs can

start again to process events in timestamp order and send new messages.

The described algorithm is quite simple but its implementation requires some

data structures to efficiently manage roll-backs. Without a global control mecha-

nism this structures will continue to grow until the simulation end, it’s required a

further algorithm to determine if historical information can be discarded and re-

claimed (fossil collection). The easier approach to fossil collection is to determine

a lower bound on the time downgrade that can be caused by roll-backs: this lower

bound is usually called Global Virtual Time (GVT). The GVT is defined as “the

minimum time stamp among all unprocessed and partially processed messages and

anti-messages in the system at wallclock time T” [78]. After calculating the GVT,

each LP will be able to discard all the data structures related to information times-

tamped before the GVT value, and now unnecessary. The GVT computation can

be managed by different centralized or distributed algorithms (i.e. Samadi’s and

Mattern’s), the performance of different approaches is strictly dependent on the

Chapter 2. Background 12

simulation architecture. A large amount of research has involved optimizing the

Time Warp algorithm, some mechanisms as dynamic memory allocation vs. static

preallocation, infrequent state saving vs. copy state method vs. incremental state

saving, lazy cancellation and re-evaluation, has been proposed, often with valuable

speed-up achievements but it is worth to note that all optimizations and also the

main algorithm is quite sensible to the simulation architecture and the simulated

model: small modifications in the above factors can led to greatly influenced speed-

up results.

2.3 Data Distribution Management (DDM)

A distributed simulation can be composed by thousands of simulated entities man-

aged by a set of PEUs, interconnected by different kinds of networks. Each entity

can be an information producer, consumer or event both. It is needed a mechanism

to match consumers and producers, both are executed in a distributed environment

by different PEUs. The simulated entities should be able to express interest to pub-

lish or receive some kind of information, these expressions of interest obviously have

to be dynamic with respect of the time evolution. Following the requests phase and

determined the correct matching, an optimized information spreading would require

to exactly determine what data set has to be sent to each PEUs, minimizing the

amount of data sent and taking advantage of eventual information duplicates. The

Data Distribution Management (DDM) as defined in the High Level Architecture

(HLA) (Section 2.5) is based on Class-Based Data Distribution and Routing Spaces

([78]:247 – 256). As we have demonstrated in [49] this approach could be not optimal

for parallel and distributed simulation of wireless mobile systems and dynamically

interacting systems, and so we have proposed a migration based approach (Chapter

4). The implementation of DDM services should be efficient and scalable, it can be

based on different algorithms and mechanisms. In [55] is proposed a new approach

to multicast group allocation, based on Dynamic Grid-Based Allocation, a combina-

tion of a Fixed Grid-Based method and Sender-Based strategy. In Section 3.2 other

Chapter 2. Background 13

useful mechanisms are sketched.

2.4 Parallel and distributed simulation of wireless

networks

The state of the art in large scale wireless network simulation includes a fairly

large number of monolithic tools and only a limited set of parallel and distributed

environments. Most existing network simulation packages have severe limitations

on the size and complexity of the network being modeled [117]. Generally speaking,

monolithic tools usually are subjected to a very limited amount of available memory

and poor computation performances. Parallel and distributed tools main weakness

can be related to the synchronization and data distribution management overhead.

An usual approach to solve this problem is to reduce the simulated network size,

looking for a way to insure that certain invariants remain constant despite the size

reduction [117].

2.4.1 MAISIE

Maisie is a C-based simulation language that can be used for sequential and par-

allel execution of discrete-event simulation models [15, 38]. On top of MAISIE at

UCLA has been implemented an advanced simulation environment which is used to

examine, validate, and predict the performance of mobile wireless network systems

[120]. Currently MAISIE is no longer supported by the UCLA Parallel Computing

Laboratory.

2.4.2 PDNS - parallel/distributed ns

PDNS [25, 118] is an extended and enhanced version of the widely diffused network

simulator ns [34], developed by the PADS research group at Georgia Tech. The

simulator is based on a federated simulation approach and uses a conservative ap-

proach to synchronization. This choice allows to share the load between a set of

Chapter 2. Background 14

interconnected CPU but does not require to deeply modify the ns-code to support

roll-backs. PDNS is currently supported and scalability tests has demonstrated a

good scalability.

2.4.3 Scalable simulation framework (SSF)

The Scalable Simulation Framework (SSF) is developed as a common parallel sim-

ulation API suitable for but not exclusively for simulation of very large telecom-

munication systems [2]. The Dartmouth SSF (DaSSF) C++ based implementation

relies on a process-oriented, conservative approach and is based on message passing

(using MPI) to run on a combination of shared-memory and distributed-memory

configurations. The next version of the tool named iSSF, will add support for HLA

interoperability, real-time simulation, and human-interaction capabilities [12]. In

[66] can be found interesting results in the simulation of wireless cellular networks.

2.4.4 Telecommunications Description Language (TED)

The Telecommunications Description Language (TED) [9] is an object-oriented lan-

guage developed for modeling networks, it relies on the Georgia Tech Time Warp

(GTW) which is a highly optimized optimistic parallel simulation kernel. TED has

served as basis for the implementation of WiPPET, a parallel simulator designed

to model the radio propagation, mobility and protocols of wireless networks [111].

Currently TED results no longer developed and supported.

2.4.5 SWiMNet

The SWiMNet is a simulation environment designed for large scale parallel simula-

tion of wireless PCS networks [53]. It is based on a set of model components that

can be combined to obtain the required PCS model. To exploit the maximum avail-

able architecture parallelism the real computation is based on precomputed events.

The goal of the precomputed events is to explicit causality, taking advantage of this

information in the following computation phase. This dual stage synchronization

Chapter 2. Background 15

mechanism is based on a conservative paradigm for the first phase (events precom-

putation) and optimistic (time warp) for the parallel simulation stage.

2.4.6 GloMoSim / QualNet

GloMosim [130] is a simulation environment for wireless and wired network systems

based on the Parsec [39] parallel discrete-event simulation kernel. QualNet [27] is

the commercial reincarnation of GloMoSim. QualNet is capable of monolithic simu-

lations and parallel executions based on the conservative synchronization approach.

It is reported as “scalable up to 10’s of thousands of nodes” [27] and includes an

extensive protocol model library. As an integration option is available an HLA &

Threaded Communication Module.

2.4.7 JiST / SWANS

SWANS is a scalable wireless network simulator built atop of JiST, a high-performance

discrete event simulation engine [13], both written in Java language and running on

an unmodified Java Virtual Machine (JVM). SWANS claims to implement an effi-

cient computation of signal propagation and the partitioning of node functionality

into individual, fine-grained entities. These entities could be clustered across nodes

to obtain a distributed simulation. The benchmarks reported on the JiST/SWANS

claims for better results (reduced wall clock time) compared to GloMoSim and ns2.

2.4.8 OPNET

OPNET is a modeling and simulation platform of wired and wireless networks, it is

object oriented and includes a very large library of implemented protocols. The tool

supports discrete event, hybrid and analytical simulation, it claims to run in both

sequential and parallel mode and to support HLA and co-simulation technologies

[24].

Chapter 2. Background 16

2.5 High Level Architecture (HLA)

The High Level Architecture (HLA) is a general purpose architecture for simulation

reuse and interoperability. The HLA was approved as an open standard through

the Institute of Electrical and Electronic Engineers (IEEE) - IEEE Standard 1516 -

in September 2000 [3, 10, 94].

One of the main forces behind the HLA development has been the requirement

for simulation reusability and code reuse. For several years the USA Department

of Defense (DoD) has faced with a decreasing budget, the military sector tradi-

tionally is a strong simulations user. In this situation the DoD has promoted the

development of new technology able to increase the simulators modularity and inter-

operability. From an economic standpoint the simulation code reusability is valuable

cost effective opportunity [71].

An HLA compliant simulation is composed by a set of federates. Each federate

is a software component that interacts with other federates to form a simulation

(federation). Previously built federates could be composed together to form new

simulations. The interaction have to be performed through a distributed middleware

named RTI. The common language of the federation is defined by a Federation

Object Model (FOM). The Object Model Template (OMT) is used to define the

structure of all FOMs. The HLA standard is composed by three parts: the rules,

the OMT and the interface specification. Some rules have to be followed by the

federates, others are about the whole federation. The HLA offers a set of services

to the federates to build the federation and to perform the simulation: federation,

declaration, object, ownership, time and data distribution management [10].

It is worth noting that the HLA defines an architecture and not an implemen-

tation, the interfaces are strictly defined but each RTI implementation is free to

manage the execution details, define internal architecture, languages, technology

and algorithms. Including both academic and commercial RTI implementation the

set of available runtimes is not very crowded.

Chapter 2. Background 17

2.5.1 DMSO RTI

The Department of Defense-sponsored and developed Runtime Infrastructure (RTI)

[4] was one of first and most diffused implementations but starting from September

30, 2002 it is no longer freely available and supported.

2.5.2 RTI NG Pro

The Virtual Technology Corporation [29] has continued the DMSO RTI development

building a commercial, enhanced product with some new features and bugfixes.

2.5.3 Georgia Tech FDK

The Federated Simulations Development Kit (FDK) [6] is a software system that

has been developed at Georgia Tech by the PADS research group led by Professor

Richard Fujimoto. The software is formed by a set of specialized modules that

can be composed to build a RTI with the requested set of features. The FDK

communication module is optimized both for parallel and distributed simulation,

the runtime would exploit shared memory if available and UDP/TCP for distributed

environments.

2.5.4 MÄK RTI

The RTI built by MÄK Technologies [16] claims to be the “the fastest RTI available”

[17]. An interesting aspect is the RTIspy, a way to inspect the RTI state variables

at runtime. Recently the MÄK Technologies has released the MÄK Game-Link

module, a software that allows to interoperate the famous gaming Unreal Engine

with HLA or DIS simulations.

2.5.5 Pitch RTI

Traditionally the pRTI has been one of the first available commercial implementa-

tions. The RTI is written in Java and based on a partially centralized architecture.

Chapter 2. Background 18

In March 2003 it was certified as fully compliant with the IEEE 1516 standard [26].

2.5.6 XRTI

The Extensible Run-Time Infrastructure (XRTI) is a Java-based, Open Source im-

plementation [5]. The XRTI current version is a prototype and implements a subset

of the RTI interface, its target is to offer a testbed for improvements and extensions

to the High Level Architecture. An interesting peculiarity are the autogenerated

proxies: the simulation developer work could be made easier thanks to a set of auto-

generated proxy classes. In this architecture the proxy is a software structure placed

between the simulation model and the RTI.

2.5.7 OpenSkies Cybernet

The Cybernet is a communication architecture for multi-player games, gambling,

stock market interactions, Internet-based classes, chat rooms and video teleconfer-

encing. The technology behind the distributed architecture is based on the HLA

standard and should allow great scalability and great reductions in the bandwidth

load thanks to caching technology [23].

2.5.8 Chronos

Chronos is an advanced networking engine [14] based on standard HLA RTI in-

terfaces and the DirectPlay technology [18]. The Chronos goals are wide but the

runtime appears to be quite suitable for the development of Internet Games and it

should be the first RTI providing a .NET programming interface compliant to the

IEEE 1516 standard.

2.5.9 ERTI Mitsubishi Space Software Company

To the best of my knowledge no details are currently publicly available about this

RTI implementation.

Chapter 3

The ARTÌS Middleware

“Well, it no use YOUR talking about waking him”, said Tweedledum, “when

you’re only one of the things in his dream. You now very well you’re not real.”

“I AM real!” said Alice and began to cry.

Lewis Carroll, Through the looking-glass

This chapter illustrates the motivation, the preliminary design and implemen-

tation issues, of a new distributed simulation middleware named Advanced RTI

System (ARTÌS) [35]. The aim of the ARTÌS middleware is to support parallel

and distributed simulations of complex systems characterized by heterogeneous and

distributed model components.

The ARTÌS design is oriented to support the model components heterogeneity,

distribution and reuse, and to increase the simulation performances, scalability and

speed-up, in parallel and distributed simulation scenarios. Another design issue

of the ARTÌS framework is the dynamic adaptation of the interprocess commu-

nication layer to the heterogeneous communication support of different simulation

scenarios. In this chapter it will be illustrated the guidelines and architecture that

was considered in the design and implementation of the ARTÌS middleware.

The validation and the performance studies of the middleware are postponed

to the following Chapter 4. Some case studies, and the distributed simulation of

massively populated wireless ad hoc and sensor networks, will be presented.

Chapter 3. The ARTÌS Middleware 20

3.1 Introduction

The design of complex systems composed by many heterogeneous components re-

quires appropriate analysis methodologies and tools to test and to validate the sys-

tem architectures, the integration and interoperability of components, and the over-

all system performances [30]. The performance evaluation of complex systems may

rely on simulation techniques because the model complexity obtained with alterna-

tive analytical and numerical techniques often results in unpractical or unaffordable

methods and computation [30, 39, 49, 75, 78, 130]. Well known sequential and mono-

lithic event-based simulation tools have been created for analyzing general purpose

system models (e.g. computation architectures, systems on chip, database systems)

[32, 33] and more targeted system models (e.g. computer networks) [24, 34]. The

problem with a sequential monolithic simulator is that it must rely on the assumption

of being implemented on a single execution unit, whose resources may be limited,

and it cannot exploit any degree of computation parallelism. To obtain a signifi-

cant insight of a complex system, detailed and fine-grained simulation models must

be designed, implemented and executed as a simulation process, often resulting in

high computation and high memory allocation needs. This fact translates in com-

putation and memory bottlenecks that may limit the complexity and the number of

model components (i.e. the simulated system scalability) that can be supported by

the simulation process. One solution to overcome these limitations can be found in

parallel and distributed simulation techniques, in which many simulation processes

can be distributed over multiple execution units. The simulation semantics, the

event ordering and event causality can be maintained and guaranteed with different

approaches (e.g. optimistic vs. conservative), by relying on distributed model-

components’ communication and synchronization services. Parallel and distributed

simulation platforms and tools have been demonstrated to be effective in reducing

the simulation execution time, i.e. in increasing the simulation speed-up. More-

over, parallel and distributed platforms could exploit wide and aggregate memory

architectures realized by a set of autonomous and interconnected execution units, by

Chapter 3. The ARTÌS Middleware 21

implementing the required communication and synchronization services. Examples

of the Parallel and Distributed Discrete Event Simulation (PDES) approach can be

found in [75, 78], e.g. Glomosim [130] based on PARSEC [39], Maisie [120], par-

allel and distributed implementations based on Network Simulator (ns-2) [34, 118]

based on RTI-Kit [118], on ANSE/WARPED [114], Wippet [93], SWiMNET [54],

and many others [100, 120]. More recently, the distributed simulation world agreed

on the need for standards, and converged in the definition of a new standard, named

IEEE 1516 [10, 60, 61].

Unfortunately, the need for distributed model-components communication and

synchronization services may require massive interprocess communication to make

the distributed simulation to evolve in correct way. Complex systems with detailed

and fine-grained simulation models can be considered communication-intensive un-

der the distributed simulation approach. As a result, interprocess communication

may become the bottleneck of the distributed simulation paradigm, and solutions

to reduce the cost of communication must be addressed by the research in this field

[49, 75, 78, 128]. Additional research studies, aiming to exploit the maximum level of

computation parallelism, dealt with dynamic balancing of logical processes’ execu-

tions (both cpu-loads and virtual time-advancing speeds) by trading-off communica-

tion, synchronization and speed-up, both in optimistic and conservative approaches

[65, 79, 124, 128]. The efficient implementation of interprocess communication is

required as a primary background issue, to overcome the possible communication

bottleneck of parallel and distributed simulations. The way interprocess communica-

tion can be sustained in distributed systems would depend mainly on the execution

units’ architectures and on the simulation system scenario. Recently proposed and

implemented middleware solutions based on the IEEE 1516 Standard for distributed

simulation and the High level Architecture (HLA) [10, 60, 61] have shown that the

parallel and distributed simulation of massive and complex systems can suffer the

distributed communication bottlenecks, due to suboptimal implementation of the

interprocess communication services, over the simulation execution platform. In

this chapter it will be proposed an overview of the design, preliminary implementa-

Chapter 3. The ARTÌS Middleware 22

tion results and guidelines, for a new, parallel and distributed simulation middleware

named Advanced RTI System (ARTÌS). The design of the ARTÌS middleware archi-

tecture is based on the guidelines provided by the analysis and evaluation of existing

HLA-based RTI implementations, and on the observations about the sub-optimal

design and management of distributed interprocess communication. Specifically, we

oriented the ARTÌS design towards the adaptive evaluation of the communication

bottlenecks and interchangeable support for multiple communication infrastructures,

from shared memory to Internet-based communication services.

This chapter is organized as follows: in Section 3.2 are sketched the motivations

for this study, and some comments on existing implementations; in Section 3.3

the design and architecture of the ARTÌS middleware will be described, with some

emphasis on the implementation guidelines; Section 3.4 presents some conclusions

and future work.

3.2 Motivation and preliminary discussion

In the following a short description of the motivations for this study will be given,

and the comments that have been originated by the analysis of existing middleware

implementations of the HLA-based distributed simulation middleware. Model com-

ponents’ reuse is considered a relevant issue to be supported in designing a new

simulation system. On the other hand, model components design details may be

confidential on behalf of the companies that designed them. The owner companies

could be interested, under a commercial viewpoint, in allowing their models to be

embedded as “black box” components for evaluating the integration analysis and

compliance with other solutions. The open model-component source code could

introduce the risk to reveal the confidential know-how in the component design so-

lutions. A way to overcome this problem would be given by supporting the model

component simulation in distributed way, and more specifically, over execution units

local to the owner company domain. Distributed model components would simply

export their interfaces and interactions (i.e. messages) with the simulation middle-

Chapter 3. The ARTÌS Middleware 23

ware and runtime infrastructure (RTI) implementing a distributed simulation. This

scenario would require that a general network communication infrastructure (e.g.

the Internet) would support the message passing communication between distributed

model components of a parallel or distributed simulation. This is the reason why

we conceptualized a distributed simulation that could be performed over TCP/IP

or Reliable-UDP/IP network protocol stacks, like in web-based simulations. Under

the latter assumption, the distributed simulation platform is intended as a way to

interconnect protected objects, instead of a way to improve the simulation speed-

up. Other possible killer applications for such a distributed simulation middleware

design would be the distributed Internet Gaming applications, gaining an even grow-

ing interest nowadays (see also Chapter 6). The opportune design of the simulation

framework, based on the exploitation of the communication scenario heterogeneities

and characteristics, could improve the overall simulation performance of distributed

and remotely executed processes.

The most natural and efficient execution scenarios for parallel and distributed

simulations often involve shared memory (SHM) and/or local area networks (LAN)

as the infrastructures supporting inter-process communication and synchronization

services. Nowadays, it is even more frequent the adoption of networked cluster of

PCs, in the place of shared-memory or tightly-coupled multiprocessors, as the exe-

cution units of the distributed simulation, primarily for cost reasons. The aforemen-

tioned motivations for model reuse and wide distribution of the model component

execution is demanding for a generalized support for inter-process communication,

up to the Internet-based services. It is self-evident how the increase of the com-

munication cost (i.e. the communication latency of local and wide area network-

based communication) would result in a reduction of the simulation speed. In other

words, any reduction of the communication-time cost would translate in more effi-

ciency of the simulation processes. The communication-time reduction could play a

fundamental role in determining the communication and synchronization overheads

between the distributed model components.

As remarked in [49], a distributed simulation approach is not always guaranteed

Chapter 3. The ARTÌS Middleware 24

to gain in performance with respect to a sequential simulation. The problem with

the distributed simulation arises when a high degree of interactions is required in

dynamic environments, mapping on distributed synchronization and inter-process

communication. The basic solution to distribute the events information among in-

teracting distributed components was the information flooding (broadcast) solution.

This solution is quite immediate to implement over a generalized communication

platform, but it was also originating the communication bottleneck effect for the

distributed simulation. It was immediately clear that a reduction of communication

would have been needed, by following two possible approaches: model aggregation

and communication filtering. Model aggregation incarnates the idea to cluster inter-

acting objects, by exploiting a degree of locality of communications that translates

in a lower communication load than the one obtained in flat broadcast (that is,

communication flooding) systems. Model aggregation can be performed by simpli-

fying the model, or by maintaining the model detail. Solutions based on model

simplification have been proposed, based on relaxation and overhead elimination,

by dynamically introducing higher levels of abstraction and merging in system sub-

models [49, 114, 124]. These solutions allow a reduction of communication since

the messages are filtered on the basis of the level of abstraction considered. Solu-

tions preserving full model-detail have been proposed by dynamically filtering the

event- and state-information dissemination. Examples can be found [49], based

on interest management groups [124], responsibility domains, spheres of influence,

multicast group allocation, data distribution management [31, 61], grid distribution

and routing spaces [31, 61, 65], model and management partitioning [54]. These

approaches rely on the reduction of communication obtained when the update of

an event- or state-information (e.g. event and/or anti-message) does not need to be

flooded to the whole system, but is simply propagated to all the causally-dependent

components. This is the basis of publishing/subscribing mechanisms for sharing

state-information and event-notifications between causally dependent components

[31, 61, 118]. The solution provided in order to dynamically filter the communication

among distributed objects was the ancestor of the Data Distribution Management

Chapter 3. The ARTÌS Middleware 25

(DDM) concept realized and implemented in HLA-based solutions [10].

The High Level Architecture (HLA) is a middleware implementation based on

standard (IEEE 1516) dealing with component-oriented distributed simulation [10].

The HLA defines rules and interfaces allowing for heterogeneous components’ inter-

operability in distributed simulation. The definition of distributed model compo-

nents (formally known as federates) with standard management APIs brings to a

high degree of model re-usability. The HLA standard defines APIs for the communi-

cation and synchronization tasks among federates. The distributed simulation is sup-

ported by a runtime middleware (RTI). The RTI is mainly responsible for providing

a general support for time management, distributed objects’ interaction, attributes’

ownership and many other optimistic and conservative event-management policies.

The IEEE 1516 standard has gained a good popularity but still has not reached the

planned diffusion. The main reasons, in my opinion, are the complex definitions and

design work required to modelers. On the other hand, the preliminary implemen-

tations of distributed simulation middleware solutions and architectures were often

too complex, too slow and required a great startup time to achieve the expected

results. Specifically, since its definition, the IEEE 1516 Standard has been criticized

about its structure and its effective ability to manage really complex and dynamic

models [63]. By analyzing the existing RTI implementations, to the best of my

knowledge, few currently available middleware solutions have been designed with

some emphasis on the adaptive exploitation of the communication infrastructure

heterogeneity. More specifically, the Georgia Tech RTI-kit [31] implementation has

been realized by introducing some elasticity and optimization in the exploitation of

the shared memory execution-system architecture, whereas many other implemen-

tations still rely on UDP or TCP socket-based interprocess communication even on

a single execution unit. It is worth noting that rare implementations provided the

source code to users, allowing them to configure the middleware on the basis of the

user needs and execution-system architecture.

The support for heterogeneous communication services and architectures should

be considered as a design principle in the implementation of a distributed simu-

Chapter 3. The ARTÌS Middleware 26

lation middleware. Moreover, the adaptive optimization and management of the

middleware communication layer realized over heterogeneous network architectures,

technologies and services should be considered both in the initialization phase, and

at runtime, in a distributed simulation process. Our ARTÌS implementation aims

to be Open Source, and to provide an elastic, easy to configure adaptation of the

communication layer to the execution system.

3.3 The ARTÌS middleware

The HLA implementation criticisms and the lack of efficient Open Source implemen-

tations are the main motivations behind the design and implementation of ARTÌS

(Advanced RTI System). The main purpose of ARTÌS is the efficient support of

complex simulations in a parallel or distributed environment.

The ARTÌS implementation follows a component-based design, that should re-

sult in a quite extendible middleware. The solutions proposed for time management

and synchronization in distributed simulations have been widely analyzed and dis-

cussed. Currently, ARTÌS supports the conservative time management based on

both the time-stepped approach, and the Chandy-Misra-Bryant algorithm. The

optimistic time management (Time Warp) is implemented and currently under vali-

dation. The initial choice to support the conservative approach was a speculation on

the highly unpredictable characteristics of our target models of interest [49], which

would have led to frequent rollbacks. Anyway when our optimistic implementa-

tion will be completed, we plan to investigate this assumption, and compare the

optimistic and conservative approaches as a future work.

In ARTÌS, design optimizations have been applied to adapt adequate protocols

for synchronization and communication in Local Area Network (LAN) or Shared

Memory (SHM) multiprocessor architectures. In my vision the communication and

synchronization middleware should be adaptive and user-transparent about all op-

timizations required to improve performances. The presence of a shared memory

for the communication among parallel or distributed Logical Processes (LPs) offers

Chapter 3. The ARTÌS Middleware 27

DDM
Time

Man.

Federation

Man.

Declaration

Man.

Object

Man.

Ownership

Man.

TCP/IP

Introspection

Performance

Logging

Migration

Layer

RTI Core

API

User Simulation Level

C/C++ TCP/IP

Unibo API

HLA

IEEE 1516 Gaming API

Memory

Shared MulticastR−UDPCommunication

Real−Time

Figure 3.1: Logical architecture of the ARTÌS middleware

the advantage of low latency, and reliable communication mechanism. Interactions

are modeled as read and write operations performed in shared memory, within the

address space of logical processes. A memory access is faster than a network commu-

nication, but the shared memory itself is not sufficient to alleviate the distributed

communication problem. To take advantage of the shared memory architecture,

concurrent accesses to memory require strict synchronization and mutual exclusion,

together with deadlock avoidance and distributed control.

The figure shows the structure of the ARTÌS middleware. ARTÌS is composed by

a set of logical modules organized in a stack-based architecture. The communication

layer is located at the bottom of the middleware architecture, and it is composed

by a set of different communication modules. The ARTÌS middleware is able of

adaptively select the best interaction module with respect to the dynamic alloca-

tion of Logical Processes (LPs) in the execution environment. The current scheme

adopts an incremental straightforward policy: given a set of LPs on the same phys-

ical host, such processes always communicate and synchronize via shared memory.

To implement these services we have designed, implemented and tested many differ-

ent solutions. The first implementation was based on Inter Process Communication

(IPC) semaphores and locks. This solution was immediately rejected both for per-

Chapter 3. The ARTÌS Middleware 28

formance reasons (semaphore and locks introduce not negligible latency), and for

scalability reasons (since the number of semaphores that could be instantiated in a

system is limited and statically controlled in the operating system kernel). Among

other possible solutions (e.g. we also considered busy-waiting) the current ARTÌS

synchronization module works with “wait on signals” and a limited set of tempo-

rized spin-locks. This solution has demonstrated very low latency and limited CPU

overhead, and it is really noteworthy for good performances obtained in multi-CPU

systems, good scalability and also because it doesn’t require any reconfiguration at

the operating system kernel level. In ARTÌS, two or more LPs located on different

hosts (i.e. no shared memory available), on the same local area network segment,

communicate by using a light Reliable-UDP (R-UDP) transport protocol over the

IP protocol. Ongoing activity is evaluating the use of raw sockets for R-UDP data

segments directly encapsulated in MAC Ethernet frames (i.e. bypassing the IP

layer). The drawback of this solution is that it could be adopted only within a

common LAN segment technology. Two or more LPs located on Internet hosts rely

on standard TCP/IP connections. Ongoing activity at this level is performed by

considering the exploitation of reliable multicast-IP solutions. The ARTÌS runtime

(RTI) core is on the top of the communication layer. It is composed by a set of

management modules, whose structure and roles have been inherited by a typical

HLA-based simulation middleware, compliant with the IEEE 1516 Standard. The

modules currently being under the implementation phase are: the Data Distribution

Management (DDM) in charge of managing the dynamic subscription/distribution

of event and data update messages, the Time Management module, the Federation

Management, Declaration Management, Object Management and Ownership Man-

agement modules in charge of administrating all the remaining management issues

accordingly with the standard rules and APIs. The ARTÌS runtime core is bound

to the user simulation layer by modular sets of application programming interfaces

(APIs). Each API group was included in order to allow a full integration and com-

pliance of many distributed model components with the ARTÌS middleware. The

Standard API is implemented as the HLA IEEE 1516 interface: this will allow the

Chapter 3. The ARTÌS Middleware 29

integration of IEEE 1516 compliant models to the ARTÌS framework. Only a subset

of the full Standard API is currently implemented in ARTÌS. The new set of APIs

of ARTÌS is called the University of Bologna APIs (Unibo APIs). These APIs are

currently designed and implemented to offer a simpler access to distributed simula-

tion services than the Standard APIs. This would make easier and simpler for the

modelers to create and instantiate a distributed simulation with ARTÌS, than with

the Standard APIs. We planned also to include in ARTÌS an API set specific for

Internet Gaming applications, whose design is still in preliminary phase.

Additional orthogonal modules are planned to be dedicated to other specific fea-

tures, oriented to the adaptive runtime management of synchronization and com-

munication overheads. As an example, a real-time introspection mechanism would

be devoted to offer an internal representation of the middleware state while the

simulation is running. Logging and Performance modules would support the user

simulation with online traces, statistics and runtime data analysis. Previous research

works shown that more efficient simulation of dynamic models can be obtained by

introducing additional software components implementing distributed model entities

migration [49]. The Migration module is orthogonal in the middleware, with the tar-

get to reduce runtime communication overheads accordingly with the coordination

supported with other peer modules. To this end, is included in ARTÌS a dynamic

model-entity migration support, inspired to the prototype framework built for the

HLA-based middleware on [49]. By defining a dynamic allocation of simulated model

entities over different physical execution units can be obtained speed-up improve-

ments (and communication overheads reduction) that could be further optimized in

ARTÌS, when supported by opportune coordination of the migration modules.

3.4 Conclusions and future work

This chapter has illustrated the motivation, the preliminary design and implementa-

tion issues of a new parallel and distributed simulation runtime. The goal to build an

efficient runtime, to support a wide set of APIs and to achieve IEEE standard com-

Chapter 3. The ARTÌS Middleware 30

patibility is quite ambitious. The runtime implementation is far from completeness

but the middleware is sufficiently complete to support the simulation of massively

populated wireless networks (see Chapter 4) and to work as testbed for our research

on speed-up improvements.

In the future we plan to complete our implementation and to optimize the cur-

rent software. A wide set of features has been externally developed and we are going

to integrate them in the middleware. Our current efforts are toward the research of

better algorithms for the management of the distributed event queues, further reduc-

ing the communication overhead and the support of High Performance Computing

(HPC) architectures with hundreds of CPUs and non uniform shared memory [1].

Actually we are working to raise the status of our software from “lab development”

to a “public release” tool, improving usability and documentation.

Chapter 4

Simulation of Large Scale Wireless

Systems

“... [I] heard a voice of many angels... the number of them was ten thousands

of ten thousands and thousands of thousands...”

The Book of Revelation

The simulation of ad hoc and sensor networks often requires a large amount of

computation, memory and time to obtain significant results. The parallel and dis-

tributed simulation approach can be a valuable solution to reduce the computation

time, and to support model components‘ modularity and reuse. In this chapter it

will be presented a testbed evaluation of the ARTÌS middleware for the simulation of

large scale wireless systems. To realize a testbed evaluation of the considered frame-

work a set of wireless systems‘ models were implemented and investigated. Specif-

ically, two classes of widely investigated wireless models were identified: mobile ad

hoc, and static sensor networks. In this chapter are presented the performances

of the simulation framework, with respect to the heterogeneous set of execution

architectures, and the modeled systems‘ characteristics. Results demonstrate that

the framework leads to increased model scalability and speed-up, by transparently

adapting and managing at runtime the communication and synchronization over-

heads, and the load balancing.

Chapter 4. Simulation of Large Scale Wireless Systems 32

4.1 Introduction

The research in the field of wireless systems, protocols and architectures has been

characterized by the need to investigate even more complex and detailed models of

wide, scalable and integrated systems. Many standards and system architectures

for wireless systems have been proposed, and are currently being deployed and de-

veloped, while other solutions are currently under the design and analysis phases

for future deployment. Wireless networks‘ architectures and wireless sensor systems

are currently under analysis to obtain insights and guidelines governing many rel-

evant design issues: as an example, system architecture and management choices,

protocols‘ design, dynamic self-configuration and adaptation to system dynamics,

systems and protocols‘ interoperability and co-existence, system scalability and sys-

tem fault-tolerance and lifetime. To obtain valuable insights of the investigated in-

dices, researchers would require intuitive, accurate and fine-grained methodologies

and tools for the analysis. Because of mathematical intractability and the model

complexity, simulation-based investigation of wireless systems is often preferred to

numerical and analytical resolution methods [116, 117, 120]. Simulation makes more

practical the modeling and investigation of complex and dynamic scenarios, often

characterized by multiple correlated factors, “memory effects” of the system states,

and dynamic causal effects. Under such conditions, a simulation model would allow

a level of detail that exceeds the detail level that could be obtained in most tractable

mathematical models. A modular simulation modeling makes it possible the model

components‘ reuse and composition, and works in favor of a correct system design,

together with the possibility of a preliminary functional-test and interoperability

analysis that would result in a fast system deployment.

On the other hand, two problems appear to limit the adoption of simulation

techniques for the analysis of complex systems: i) the limitation of affordable-

cost simulation execution architectures (mainly memory and computational power)

[116, 117, 120], and ii) the scarce possibility of model components‘ reuse and model

composition among heterogeneous simulation models and tools. As a consequence,

Chapter 4. Simulation of Large Scale Wireless Systems 33

the research for tools and new methodologies for standard- and module-based mod-

eling and simulation of large-scale and complex wireless networks has received a

great attention by the research community, and has led to some interesting results

[39, 42, 52, 54, 79, 84, 92, 93, 100, 113, 115, 124]. Currently, it is widely recognized

that many of the most adopted tools for simulation of wireless systems (e.g. Network

Simulator, ns2[34]) suffer the memory limitation of the execution architecture (which

translates in a limitation of the model complexity and scalability). Also, they suffer

the great computation time required to complete the simulation processes [107]. The

fact that wireless networks models may be complex and may include a potentially

huge number of simulated and dynamically interacting components would represent

an amplifier of the modeling limitations due to memory constraints of current tools

and simulation architectures. Specifically, under the computation viewpoint, the

simulation of wireless systems‘ models may require a long time, due to the exe-

cution of complex behaviors and state updates required on behalf of many model

components. Many different model factors may introduce additional computation

requirements for implementing detailed model components behaviors: e.g. mobility

patterns and topology changes, layered communication protocols, resource sharing,

interference effects, among others. As a result, large scale and complex simulation

models are often unpractical to simulate on a single-processor execution unit, be-

cause of huge memory requirements and large amount of time required to complete

the simulation runs [116, 117]. Parallel and distributed models and architectures

may be a viable alternative to reduce memory bottlenecks through distributed mem-

ory hierarchies, and to obtain simulation speed-up thanks to the parallel execution

of computation tasks [34, 39, 53, 54, 75, 78, 92, 93, 100, 118, 120, 130].

As seen in the previous chapters the High Level Architecture (HLA) is a standard

(IEEE 1516) for distributed simulation. Most of the RTI HLA implementations

available so far have gained a good interest and diffusion, but have also been subject

to some criticisms. The investigation of new features and services, and the lack of

Open Source runtime implementations are the main motivations behind the design

and implementation of the ARTIS (Advanced RTI System) middleware, which was

Chapter 4. Simulation of Large Scale Wireless Systems 34

illustrated in the previous Chapter 3.

The main bottleneck arising in a distributed simulation framework is given by

the communication overheads to realize the event-message distribution and synchro-

nization services between a set of distributed model entities. The communication

overhead due to the message passing required for the parallel and distributed sim-

ulation could nullify all the performance gain obtained by parallel executions. The

ARTÌS framework is designed to realize the dynamic adaptation of the interpro-

cess communication layer to the heterogeneous communication support offered by

possible different simulation-execution architectures. Specifically, we oriented the

ARTÌS design towards the adaptive evaluation of the communication bottlenecks

and support for multiple communication infrastructures and services, from shared

memory to Internet-based communication. ARTÌS has been also integrated in a

framework with another middleware, named Generic Adaptive Interaction Architec-

ture (GAIA). Basically, GAIA implements a simple model components‘ migration

mechanism, preliminary proposed on the top of HLA-based distributed simulations

[49]. The HLA standard and existing RTIs do not define component migration fa-

cilities, and preliminary research activity was made on this topic [101, 106]. GAIA

includes a heuristic migration policy, whose aim is to dynamically partition and allo-

cate the interacting model components over many Logical Processes (LPs), respec-

tively executed over a set of multiple, distributed execution units. The composition

of ARTÌS and GAIA realizes a framework for parallel and distributed simulation,

characterized by adaptive reactions to dynamic systems‘ behavior, and oriented to

the communication-overhead reduction. In this chapter, the prototype implemen-

tation of the ARTÌS and GAIA framework is outlined. A set of testbed-evaluation

results are presented to express the potential of ARTÌS with and without GAIA

over heterogeneous execution architectures, and for two classes of relevant wireless

systems‘ models: wireless mobile ad hoc networks and wireless sensor networks.

The chapter structure is the following: in Section 4.2 will be outlined the guide-

lines and motivations for the modeling and implementation of distributed simulation

of wireless systems. In Section 4.4 the GAIA framework is introduced. In Section

Chapter 4. Simulation of Large Scale Wireless Systems 35

4.5, two wireless system’s models are described. In Section 4.6 will be presented a

set of simulation results. In Section 4.9 conclusions will be summarized.

4.2 Distributed simulation of wireless systems

Wireless systems are highly dynamic systems where the interactions are subject to

fast changes driven by the system evolution. Given a wireless system model, it is

quite natural for modelers to implement and recycle a set of model components,

each one realized by a composition of software modules, to obtain the global system

model. Every autonomous model component (e.g. a wireless node or sensor) is

then required to mimic the interactions (i.e. the causal effects of events) with all

the neighbor components in the modeled scenario. Two inherent characteristics of

wireless systems play an important role in the modeling and simulation viewpoint:

i) the hosts‘ mobility and ii) the open broadcast nature of the wireless transmissions.

As an example, topology changes due to simulated hosts‘ mobility map on causal-

ity effects in the “areas of influence” of each mobile device. This may result in

dynamically shaped causality-domains, which map on the interaction-scheme of the

distributed model components. Intuitively, given two or more neighbor-hosts shar-

ing the wireless medium, the causal effect of a signal-interference event due to the

“open broadcast” nature of the wireless transmissions could result in a chain of

local-state events up to the high protocols‘ layers [125]. In our modeling approach,

we define a model entity as the data structure defined to model a Simulated Mobile

Host (SMH).

A high degree of causality in the simulation of the wireless hosts‘ communica-

tion is driven by the local-topology interaction (i.e. transmissions) between neighbor

hosts [11, 125]. Under the modeling and simulation viewpoint, if a SMH changes its

position, it will eventually interact with a new community of neighbor hosts. A cer-

tain degree of time-locality among neighbors‘ communications can be considered an

acceptable assumption in many wireless system models, depending on the communi-

cation load and the mobility model assumptions. The system and model dynamics

Chapter 4. Simulation of Large Scale Wireless Systems 36

can be influenced by motion model and speed, and also by the SMHs density.

To realize a correct evolution in a parallel or distributed simulation, under the

event-causality viewpoint, every model components‘ interaction should be notified

as an event-message to all the causally dependent model components. In a dis-

tributed simulation, this task is usually managed by a runtime event-message dis-

tribution mechanism. Complex systems with detailed and fine-grained simulation

models can be considered communication-intensive under the distributed simula-

tion approach. As a result, interprocess communication may become the bottleneck

of the distributed simulation paradigm. The way interprocess communication can

be supported in distributed systems would mainly depend on the execution units

and on the simulation system resources, architectures and characteristics. As an

example, message passing communication can be performed efficiently over shared

memory architectures, while it would require medium/high communication latencies

over local and wide area network communication services.

The physical clustering of interacting model components on a shared memory ar-

chitecture could result in the advantage to exploit the most efficient message passing

implementation. Unfortunately, in wireless mobile networks any optimal, static clus-

tering and allocation of model entities, based on the current component-interaction

scheme, will become immediately suboptimal, due to the dynamics of the model

interactions (e.g. SMH mobility). The approach used in currently available imple-

mentations of parallel and distributed simulation frameworks is to passively detect

the model component interactions, by adapting the event message distribution ac-

cordingly. No background optimization is based on the heterogeneous characteristics

of any available communication infrastructure. This observation was a motivation

for the design of our simulation framework.

The event-message distribution of a distributed simulation requires a dynamic

definition of publishing/subscribing lists, or the implementation of a complete state-

sharing information system. On the other hand, a dynamic approach for the event-

distribution and state-information-updates (e.g. dynamic lists and subscription

groups) would lead to additional communication and management overheads. In

Chapter 4. Simulation of Large Scale Wireless Systems 37

some scenarios, the communication cost of list-updates or fine-grained events‘ com-

munication between a dynamically variable set of components, could make attrac-

tive a complementary approach. As an example, when the system communication

infrastructure is characterized by significant performance asymmetry (e.g. shared

memory vs. LAN communication), like in networked clusters of PCs, the migration

cost needed to dynamically cluster the set of interacting components over a single

Physical Execution Unit (PEU) could become attractive. his would be even more

attractive if the following three assumptions could be satisfied: i) components‘ mi-

gration could be implemented incrementally as a simple data-structure (i.e. state)

transfer, ii) the component state would be comparable with the amount of data

exchanged for interactions, and iii) the object‘s interaction scheme would be main-

tained for a significant time (i.e. time-locality).

4.3 The simulation execution testbed

The simulation testbed consists of a distributed, discrete-event simulation of model

components. Model components are executed as logical processes over a set of

physical execution units (PEUs), connected by a physical LAN network.

The execution architecture for our experiments is realized by 3 PEUs each one

equipped by Dual Xeon Pentium IV 2800 Mhz, with 3 GB RAM, and one PEU

equipped by Quad Xeon Pentium IV 1500 Mhz, with 2 GB RAM, all connected by

a Fast Ethernet (100 Mb/s) LAN, and all equipped with Debian GNU/Linux OS

with kernel version 2.6.

The design approach is mainly focused on the adaptive communication-reduction

between the PEUs where Logical Processes (LP) are executed. Every LP is statically

allocated and executed on a single PEU. Specifically, one single LP cannot be split

over two or more PEUs, more LPs can be executed over a single PEU, and LPs

cannot be migrated between PEUs.

Every LP is managed by a runtime simulation core (ARTÌS) as a single sim-

ulation component. On the other hand, a single LP is implicitly formed by a set

Chapter 4. Simulation of Large Scale Wireless Systems 38

of threads, each one managing and updating the state (i.e. local data structures)

of a set of Simulated Mobile Hosts (SMHs). A communication between wireless

hosts can be modeled as a set of interactions (i.e. message-events) between any

couple of adjacent SMHs. Since a wireless communication must be always modeled

as a broadcast within a limited local transmission range, this requires that each

SMH within a variable range would be notified with the transmission-related event-

messages. Each event would result in a multiple set of one-to-one interactions (i.e.

event messages) among local SMHs. If the sender SMH and its neighbors belong to

the same LP (i.e. they are executed on the same PEU), or if they belong to differ-

ent LPs implemented over the same PEU, then their interactions can be considered

local (e.g. shared memory communication) and do not involve any physical network

communication. On the other hand, every interaction involving participants imple-

mented over foreign LPs (e.g. LPs implemented over different PEUs) may require

time-expensive physical network communication. By reducing the physical network

communication we can reduce the synchronization delays. By clustering neighbor

SMHs within the same LP, or within the LPs executed over the same PEU, we

close the causal interactions and system communication within the PEU where the

interacting LPs (and their respective SMHs) are executed. In addition, clustered in-

teracting SMHs would limit interactions with the management layers of the ARTÍS

middleware, by further reducing the computation and communication overheads.

To sum up, by limiting the network communication in favor of the local (shared

memory) communication, the wall clock time required by the simulation runtime

to achieve full synchronization would be reduced. This would make it possible to

obtain a simulation speed-up.

A static approach could be adopted to optimally distribute the SMHs within the

LPs in the simulation initialization phase. The optimal solution for allocation is hard

to find and could be defined in many ways, depending on the targeted overheads’

reduction. Typically, the optimality is defined with respect to latency (to reduce

the physical network communication cost) or computation (to obtain an optimally

balanced execution parallelism). Anyway, this should be explicitly performed offline

Chapter 4. Simulation of Large Scale Wireless Systems 39

by the modeler, on the basis of the modeling assumptions. Moreover, as it will

be demonstrated in the final results, the model dynamics (e.g. the SMH mobility)

would make the initially optimal distribution less effective after few simulation steps.

This result may translate in a performance degradation for the simulation speed-up,

mainly due to the increasing cost of communication and synchronization required

between distributed model components (logical processes). In our approach the

optimization is dynamically performed at runtime, by the proposed simulation mid-

dleware, by migrating the SMHs between LPs. In this way, the modeler is relieved

by the optimization task, and the system converges towards a balanced, tuneable

and pseudo-optimal model components‘ distribution driven by the model interac-

tion scheme. If a time-locality is assumed in the interaction between neighbor hosts,

it could be convenient to migrate the foreign SMH to the LP (and to the PEU)

where its new neighbors are located, by reducing in this way the cost of successive

interactions. This assumption is typically verified in MANETs, e.g. most routing

protocols are based on a “proximity” concept to decide the routing path of com-

munications, and such communications usually last for a significant time, following

a bidirectional session-based scheme. The effect of the time-locality of the causal-

ity effect inside each logical process will be investigated in the final section of this

chapter, by varying the SMH mobility speed.

4.4 The distributed simulation framework

4.4.1 The advanced RTI system (ARTIS)

The main purpose of ARTÌS is the efficient support of complex simulations in a

parallel and distributed environment. The ARTÌS implementation and design was

described in Chapter 3

Chapter 4. Simulation of Large Scale Wireless Systems 40

4.4.2 The generic adaptive interaction architecture (GAIA)

The PDES simulator built to obtain an experimental testbed of our proposal is

based on a distributed architecture made by a set of logical processes glued to-

gether by the ARTÌS middleware. In our preliminary design we adopted the High

Level Architecture (HLA) DMSO (Department of Military Simulation Office, US

Department of Defense) implementation RTI-1.3NGv3.2 as the basis for our work.

On top of the HLA RTI we built a middleware extension called Generic Adaptive

Interaction Architecture (GAIA). GAIA provides the interaction to the simulation

core, the location and distribution data management, the random number generator,

tracefile-logging and other simulation facilities.

The target of GAIA is to provide migration and service APIs to the simulation

developer. Because of the unavailability of DMSO RTI source-code, the GAIA

facilities were initially provided as an external middleware on top of the DMSO

RTI. The development of ARTÌS middleware has permitted to merge the GAIA

framework within the runtime core, still reducing the runtime execution overheads.

The SMH models are implemented as code with data structures to define and

maintain the SMH state information. GAIA migrates the “data structure”, i.e. the

state information of SMHs between LPs. This required to design and to implement a

migration layer for the “state” of the SMH model entities between LPs. The ARTÌS

runtime has been extended to execute static models and to exploit migration by

means of a small set of Application Programming Interfaces (APIs) providing migra-

tion services for migration-enabled models. To test our framework we implemented a

time-stepped, conservative, parallel and distributed discrete-event simulation of two

classes of models for mobile wireless systems. By following the guidelines obtained

in, the ARTÌS runtime has been designed and implemented as an alternative to HLA

runtime, and the GAIA middleware has been completely reimplemented, with both

the migration and the load-balancing heuristics completely redesigned. Moreover,

the composition of GAIA with ARTÌS results in lower management overheads and

greater speed-up than the the ARTÌS framework without the migration support.

Chapter 4. Simulation of Large Scale Wireless Systems 41

4.5 Wireless systems’ model definition

In the following it will be described two classes of wireless systems’ models that

was considered in the testbed evaluation of the ARTÌS and GAIA framework. The

two classes of models have been selected i) because they represent two examples

of widely studied systems and ii) because they capture most of the complementary

characteristics of wireless simulation systems about mobility, communication load,

management overheads, resource limitations. This will let us to obtain results about

the optimization and speed-up achieved by our simulation framework, based on the

exploitation and adaptation to many variable model characteristics.

4.5.1 The mobile Ad Hoc network’s model

The definition of a mobile ad hoc network model is basically devoted to study

the effect of hosts‘ mobility and high communication loads assumptions under the

modeling viewpoint. It was assumed a highly scalable number of simulated mobile

hosts (SMHs), each one following a Random Mobility Motion model (RMM). This

motion model is synthetic and far from reality, but the choice was driven by the

unpredictable and uncorrelated mobility pattern of SMHs. This is the worst case

analysis for the presented mechanism, because any heuristic definition cannot rely

on any assumption about the motion correlation and predictability of SMHs. The

only correlation effect exploited in our mechanism is given by the “time-locality”

of communication sessions between neighbor-hosts. Given the framework definition,

my feeling is that any other widely used motion model, like any restricted, cor-

related or Group Mobility Model, would result in better results than the adopted

RMM model, for any migration heuristic. The RMM model is defined by SMHs

swinging between mobile and static epochs. At the beginning of each epoch, ev-

ery SMH decides to stay or to change its mobile or static status, by following a

geometric distribution with parameter p=1/2. When entering a mobile state, new,

uncorrelated and uniformly-distributed direction and speed are randomly selected

and maintained up to a static epoch. The cycle is repeated for the whole simu-

Chapter 4. Simulation of Large Scale Wireless Systems 42

Figure 4.1: A snapshop of a Mobile Ad Hoc network with 1000 SMHs dynamically

allocated by GAIA over 3 PEU. Dot colors define the PEU where the SMH is

executed.

lation run by every SMH. Sometimes we considered motion sub-models related to

the motion speed, i.e. high speed (25 spaceunits/timestep), and lower speed (10

spaceunits/timestep). To stress the migration scheme, it was also used an extreme

sub-model with very high speed (100 spaceunits/timestep).

Space is modeled as a torus-shaped 2-D grid-topology, 10.000x10.000 spaceu-

nits, populated by a constant number of mobile SMHs. SMHs are randomly and

uniformly distributed in the simulated area (see dots positions in Figure 4.1). The

torus space topology, indeed unrealistic, is commonly used by modelers to prevent

non-uniform SMHs‘ concentration in any area. This allows to evaluate the mecha-

nism behavior in a worst case scenario, where the clustering of SMHs is not trivially

determined by high concentration in small areas. These are stressing examples for

our mechanisms, because they will lead to a high migration overhead, given the

motion model defined. The simulated space is wide and open, without obstacles.

The modeled communication between SMHs is a constant flow of ping messages

Chapter 4. Simulation of Large Scale Wireless Systems 43

(i.e. constant bit rate), transmitted by every SMH to all neighbors within a wireless

communication range of 250 spaceunits. Again, this choice is stressing the migration

mechanism under the mobility effects of continuously transmitting SMHs. In the

defined scenario, since the SMH migration policy is evaluated on the basis of the

local and remote interaction (i.e. communication), no communication translates in

no migration needs, hence no additional communication, synchronization and mi-

gration overheads. The rate of ping messages is constant because it is the control

parameter for communication: increasing/reducing the ping rate would be equiv-

alent to change the interaction rate. For the future, and extended version of the

model is planned, with the real implementation of message flows, routing protocols

and applications as a future work. Currently, the host model implements the Carrier

Sense Multiple Access with Collision Avoidance (CSMA/CA) Medium Access Con-

trol protocol of the IEEE 802.11 Distributed Coordination Function. Anyway, this

model is not used in this investigation because we are only interested in modeling

the basic interaction, at the physical layer, which is given by the event of a channel

occupancy due to local ping messages among neighbor hosts. It is worth noting

that additional local computation would be required by adopting more detailed and

complete protocol stacks implementations over the SMH model entities, resulting in

additional advantages of parallel execution.

4.5.2 The sensor network model

The second model considered in this testbed evaluation is based on a wireless sensor

network system. In this model we are interested to test the model scalability, by

showing results in a system with up to 40.000 sensors. The most important feature

of this system with respect to the mobile ad hoc network, is given by the fact

that sensors are static. They are randomly placed with uniform distribution in the

simulated area (see Figures 4.2 and 4.3).

For maintaining the protocol behavior and average connectivity, the area size is

variable such that the sensor density is constant in all experiments (approximatively

1 sensor in 10x10 space units). The communication range of each sensor is 15

Chapter 4. Simulation of Large Scale Wireless Systems 44

Figure 4.2: A snapshot of a wireless sensor network with 1000 sensors. Dot colors

refer to sensor state: red=active, green=power saving, white= listening.

Figure 4.3: A snapshot of a wireless sensor network with 1000 sensors while prop-

agating an alert message.

Chapter 4. Simulation of Large Scale Wireless Systems 45

space units. Every sensor implements a “pressure variation” detector and sends

broadcast alerts that are flooding towards a set of target detection points. To

maximize the network lifetime, every sensor implements a power saving mechanism

that adaptively manages the sensor state. A sensor can be active, listening and in

power saving state. A new Medium Access Control (MAC) scheme, whose definition

is out of the scope of this thesis is currently investigated by adopting the defined

model. Under the modeling and simulation viewpoint this model is complete and

provides detailed information about the system behavior, both for sensor network

management, communication, resources‘ utilization and network lifetime indices.

4.6 Experimental results

In this section will be presented the results of some testbed simulation experiments

executed to test the ARTÌS distributed simulation framework, and the GAIA mid-

dleware. The experiments have been performed over heterogeneous execution infras-

tructures and scenarios, and have involved two different classes of wireless systems

models. The motivation for this study is given by the evaluation of the adaptive

self-configuration of the ARTÌS framework and the GAIA middleware, executed in

transparent way with respect to the model and execution infrastructure characteris-

tics. The target indices to be evaluated include: the observation of migration over-

heads related to model dynamics under GAIA, the advantages obtained by GAIA

and ARTÌS under the adaptive communication overheads reduction, and the speed-

up obtained by our framework under variable execution scenarios and under variable

modeling assumptions for the simulated wireless systems.

The execution architecture for the experiments was previously described. Mul-

tiple runs of each experiment was performed, and the confidence intervals obtained

with a 95% confidence level are lower than 5% the average value of the performance

indices shown.

In the following it is defined as M the number of physical execution units (PEUs)

supporting the simulation execution, and as N the total number of logical processes

Chapter 4. Simulation of Large Scale Wireless Systems 46

(LPs) implemented. With “migration ON” or “migration OFF” is identified a dis-

tributed simulation with the GAIA migration heuristic turned ON and OFF, respec-

tively. All the performed experiments were started with a pseudo-random, uniform

distribution of a variable number of SMHs for both the ad hoc, and the sensor

networks models. Initially, the set of SMHs is randomly allocated over the set of

PEUs, without any optimal allocation. The choice of the initial random distribution

allows to analyze the transient dynamic effect of the GAIA migration mechanism.

In [49] it was shown that the random distribution would be asymptotically obtained

if migration is disabled, starting from any initial (and optimal) allocation scheme,

due to the SMHs‘ mobility. Most of the figures presented show transient behavior of

the performance indices, because this describes the dynamics and fast convergence

effect of the proposed mechanisms. Steady-state results have been also discussed to

define the asymptotical behavior of the proposed framework.

4.7 Mobile ad hoc network’s simulation

Figure 4.4 shows the transient number of model components (SMH) migrations per-

formed by the GAIA middleware during the initial phase of a distributed simulation

of the mobile ad hoc network model. The model is composed by 5000 SMHs, ran-

domly distributed in the simulated area, and randomly allocated over three PEUs.

The migration heuristic of GAIA begins to migrate the SMH model components

between PEUs after a warmup (observation) phase of 50 timesteps.

The Figure 4.4 shows the transient number of migrations performed between the

three PEUs in every timestep, based on the average speed value of SMHs in the

simulated mobile ad hoc network (i.e. 10, 25 and 100 m/s). The SMH speed here is

just a modeling factor to stress the simulation and it is not expected to be realistic.

It can be observed that in the initial phase the GAIA middleware induces a peak of

model components reallocation aiming to cluster the interacting SMHs over the same

PEU. The resulting model component allocation over PEUs at timestep 1000 would

be similar to the distribution shown in Figure 4.1. In Figure 4.1, one dot represents

Chapter 4. Simulation of Large Scale Wireless Systems 47

 0

 5

 10

 15

 20

 0 500 1000 1500 2000 2500 3000

N
um

be
r

of
 m

ig
ra

tio
ns

Timesteps

Ah Hoc Network: 3 LPs, 5000 SMHs

GAIA Migration ON: 100 m/s
GAIA Migration ON: 25 m/s
GAIA Migration ON: 10 m/s

Figure 4.4: Transient number of GAIA migrations per timestep, with respect to

modeled mobility parameters.

a SMH in the simulated area, and the color of dots indicates the PEU where the

SMH is executed. It is clear the clustering effect obtained by GAIA migrations after

the initial transient phase. At the steady state, the SMH (dots) mobility would

smoothly require a continuous adaptation and migration of SMHs moving out of the

context of SMHs executed over the local PEUs. Figure 4.4 indicates that the higher

the mobility (speed) of SMHs, the higher is the reallocation rate required by GAIA

to optimize the degree of local communications within the PEUs.

Figure 4.5 shows the Local Communication Ratio (LCR) of messages originated

by the simulation in the same scenario considered in Figure 4.1 and 4.4. The LCR is

intuitively defined as the percentage of message passing required by the simulation

execution which is local to each one of the three PEUs adopted for the execution.

Given the ARTÌS design and assumptions, local message passing translates in ef-

ficient shared memory communication within each PEU, as an alternative to less

efficient and time consuming network communications. Figure 4.5 shows that the

GAIA migration allows to obtain a steady-state percentage of local communications

around 85% in the considered scenario. Figure 4.5 also indicates that the mobility of

SMHs have less or no effect on the LCR index when GAIA migration is active. This

Chapter 4. Simulation of Large Scale Wireless Systems 48

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000

LC
R

Timesteps

Ad Hoc Network: 3 LPs, 5000 SMHs

GAIA Migration ON: 10 m/s
GAIA Migration ON: 25 m/s

GAIA Migration ON: 100 m/s
GAIA Migration OFF: 10,25,100 m/s

Figure 4.5: Transient percentage of local communications per timestep, with re-

spect to modeled mobility parameters, with and without GAIA migration.

is due to the adaptive effect of GAIA migrations at runtime, shown in Figure 4.4.

The same simulation scenarios with GAIA migration OFF result in a LCR index

which is around 33%, as expected when interacting SMHs are randomly allocated

over three PEUs.

Figure 4.6 shows results about the speed-up of the distributed simulation un-

der the mobile ad hoc modeling scenario considered above. The speed-up is shown

as a transient index, by averaging the consecutive speed-up indices calculated over

separated and adjacent simulated time windows. This allows to evaluate the tran-

sient effect of the speed-up in the initial phase, and when GAIA is switched OFF

at runtime. The monolithic scenario is considered as the normalization value for

speed-up evaluation. A monolithic simulation is intended as a single logical process

(LP) executed over a single PEU. In our implementation, when analyzing the simu-

lator performances, it is considered the monolithic execution platform as equivalent

to a single sequential simulator. This assumption is not completely true in prac-

tice, because a really small biasing effect is introduced by the ARTÌS middleware

in background, anyway the biasing is really low, and this assumption allows us to

study comparable systems and models. When the simulation is executed over 3

Chapter 4. Simulation of Large Scale Wireless Systems 49

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1000 1500 2000 2500 3000

S
pe

ed
-u

p

Timesteps

Ad Hoc Network (10 m/s): Speed-up

GAIA Migration ON: M=3, N=3
GAIA Migration ON/OFF: M=3, N=3

GAIA Migration OFF: M=3, N=3
Monolithic

Figure 4.6: Transient speed-up effect over ARTÌS with and without the GAIA

migration mechanism. Average SMH speed: 10 m/s.

PEUs (M = 3) and each PEU implements a single LP (N=3) with GAIA migration

OFF, the speed-up obtained is around the value 1.5 with respect to the monolithic

execution scenario. In the same scenario with GAIA migration ON, the speed-up

starts around the value 2 and it increases up to 2.3 by the effect of GAIA dynamic

reallocation and the increase of local communications. The curve labeled “GAIA

Migration ON/OFF” shows the effect of degradation of the speed-up obtained when,

after the initial reallocation of GAIA, the GAIA migration is switched off: it is clear

how the dynamic effect of SMH mobility (whose average speed is 10 m/s) realizes

a transient mutation of interactions (i.e. communication) from local to external for

the PEUs, by decreasing the speed-up.

Figure 4.7 shows the same indices of Figure 4.6, with the only difference given

by the average speed of the modeled SMHs: from 10 m/s in Figure 4.6 to 25 m/s in

Figure 4.7. As expected, the high modeled speed translates in less “time-locality”

effect of local interactions. This reduces a little the speed-up index obtained, because

GAIA introduces less local communication advantages. On the other hand, the

relative differences among the considered scenarios and mechanisms remain valuable,

as in previous case. The same consideration about “time-locality” can be applied

Chapter 4. Simulation of Large Scale Wireless Systems 50

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1000 1500 2000 2500 3000

S
pe

ed
-u

p

Timesteps

Ad Hoc Network (25 m/s): Speed-up

GAIA Migration ON: M=3, N=3
GAIA Migration ON/OFF: M=3, N=3

GAIA Migration OFF: M=3, N=3
Monolithic

Figure 4.7: Transient speed-up effect over ARTÌS with and without the GAIA

migration mechanism. Average SMH speed: 25 m/s.

to explain why the speed-up degradation when the GAIA migration is switched

ON/OFF at runtime is faster in Figure 4.7 than in Figure 4.6.

Figure 4.8 shows the speed-up investigation of many execution system archi-

tectures, based on the mobile ad hoc network model characterized by 5000 SMHs

with average speed of 25 m/s. Every bar in the histogram shows the speed-up with

respect to the monolithic implementation, with GAIA Migration Off and On, re-

spectively. The first couple of bars on the left are just a reference of the monolithic

normalized speed-up. In general, the GAIA migration has a positive effect on the

speed-up indices, with many PEUs, by increasing the speed-up indices up to 25%.

More specifically, the second couple of bars shows the speed-up obtained by 3 LPs

over 1 PEU. This indicates that ARTÌS is able to exploit the shared memory, dual

processor architecture of the PEU, when implementing the simulation splitted on

3 LPs. In the same way, as reported on the histogram, by increasing the number

of PEUs (M value) in the execution architecture, ARTÌS and GAIA show to scale

and to support more LP executions by gaining simulation speed-up. In addition,

in all the execution scenarios, GAIA dynamically recovers the overhead of network

communication due to model assumptions (SMH mobility), resulting in additional

Chapter 4. Simulation of Large Scale Wireless Systems 51

Figure 4.8: Speed-up investigation of ARTÌS and GAIA over many execution

system architectures.

speed-up.

4.8 Sensor network’s simulation

Figure 4.9 shows the scalability and speed-up obtained by the simulation of the

sensor network model previously defined. The effect of GAIA here is not considered

because we are testing the scalability of the model and simulation implementation

for a model composed by static wireless sensors. Again, every PEU considered here

is a shared memory, dual processor architecture. It was considered 3 execution sce-

narios. The monolithic scenario is realized by one LP over one PEU. The scenario

labeled (M=3, N=6) is realized by 3 PEUs connected by the Ethernet LAN, each

one with 2 LPs executed over the dual processor, shared memory architecture. The

scenario labeled (M=2, N=4) is realized by 2 PEUs connected by the Ethernet LAN,

each one with 2 LPs executed over the dual processor, shared memory architecture.

The figure shows the speed-up obtained as a function of the number of modeled

Chapter 4. Simulation of Large Scale Wireless Systems 52

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 10000 15000 20000 25000 30000 35000 40000

S
pe

ed
-u

p

Number of Sensors

Sensors Network: Speed-up

GAIA Migration OFF: M=3, N=6
GAIA Migration OFF: M=2, N=4

Monolithic

Figure 4.9: Speed-up and scalability investigation of ARTÌS for a massive sensor

network model.

sensors, i.e. the ARTÌS speed-up and scalability under the model complexity view-

point. The speed-up obtained increases with the number of simulated sensors. This

can be explained because a huge number of sensors could exploit the potential for

parallel computation expressed by the multiple number of processors in the exe-

cution architecture. The speed-up obtained by 3 PEU outperforms the speed-up

obtained with only 2 PEUs, as expected. When the number of sensors is really high

(i.e. around 40.000) the speed-up index reaches the top value, and does not show

reductions, indicating the good scalability achieved by the simulator performance.

As a marginal note, by considering that a state occupancy of a sensor model entity

in our experiments was around 250 bytes, we executed a single experiment for a

simulation of 1.000.000 sensors without having evidence of any problem. Additional

investigation will be performed on the evaluation of GAIA reallocation mechanism

under the sensor network scenario, in the initial phase. This would contribute to

further optimize and increase the local communication and speed-up obtained.

Chapter 4. Simulation of Large Scale Wireless Systems 53

4.9 Conclusions and future work

In this chapter has been presented a testbed evaluation of the ARTÌS middleware

for the simulation of large scale wireless systems. Two classes of widely investigated

wireless models were simulated: mobile ad hoc and static sensor networks. In the

first case has been demonstrated as the integration of the GAIA framework (“simu-

lated entities migration”) leads to increased model scalability and speed-up. In the

case of static sensor networks an optimal static allocation could be performed at

bootstrap and so the GAIA framework is not required. In this case the middleware

has proved to be scalable and we plan to further enlarge the number of simulated

entities involved in our testbeds.

Our ongoing work includes the definition of new models for dynamically inter-

acting systems like multi-agent systems, P2P models, scale free networks, complete

protocol stacks for ad hoc and sensor models, biology-inspired models and molecular

systems.

Chapter 5

Concurrent Replication of PADS

“Replicants are like any other machine. They’re either a benefit or a hazard.”

Ridley Scott, Blade Runner

Parallel and Distributed Simulations (PADS) enable the analysis of complex

systems by concurrently exploiting the aggregate computation power and mem-

ory of clusters of execution units. In this chapter it will be investigated a new

direction for increasing both the speed-up of a simulation process and the utiliza-

tion of computation (and communication) resources. A typical implementation of

a simulation-based investigation requires to collect many independent observations

for a correct and significant statistical analysis of results. On the other hand, the

execution of many independent parallel or distributed simulations may suffer the

speed-up reduction due to rollbacks under the optimistic approach, and due to idle

CPU times originated by synchronization and communication bottlenecks under the

conservative approach. It will be introduced a parallel and distributed simulation

framework supporting Concurrent Replication of Parallel and Distributed Simula-

tions (CR-PADS), as an alternative to the execution of a linear sequence of multiple

parallel or distributed simulation runs. This approach is substantially different from

the Parallel and Distributed Simulation Cloning concept, and is quite different from

the Multiple Replications in Parallel (MRIP) approach adopted for the concurrent

execution of independent sequential simulation runs. The implementation of the

CR-PADS mechanism has been defined and tested over the Advanced RTI System

Chapter 5. Concurrent Replication of PADS 55

(ARTÌS) framework. Results obtained from tests executed under variable scenarios

show that speed-up gains could be obtained by adopting the proposed replication

approach in addition to the pure parallel and distributed simulation.

5.1 Introduction

Many fields of research currently adopt simulation-based techniques for the analysis,

in order to obtain deep insight of new systems‘ design, tuning and optimization.

Many systems of interest for the analysis may be characterized by a complex model

definition and dynamic interaction among a possibly huge set of model components.

Complex dynamic systems, (as an example, like wireless networks, systems on chip,

molecular systems), are of great interest in current research [39, 76, 115, 116, 117,

118, 130]. A complex dynamic system can be defined as a system whose model is

composed by a high number of model components, and where the interactions (i.e.

the causal effects of events) i) happens frequently among model components, and

ii) they are dynamically subject to fast changes driven by the system (and model)

evolution.

One of the main problems to deal with when implementing a parallel and dis-

tributed simulation is the communication and synchronization among the distributed

simulation components (i.e. the federates). In general, an inverse tradeoff exists

that determine a mutual worsening in the speed-up: i) by reducing the degree

of parallelism in the computation or, conversely, ii) by the arising of communi-

cation bottlenecks and blocking synchronization primitives among many heteroge-

neous simulation components. A perfect load balancing among the execution units

is difficult to obtain, due to the model dynamics and the asymmetry of the physical

execution units. For these reasons, a majority of fast components usually may be

idle waiting the synchronization of at least one single late component. This means

that the execution of a majority of execution units is often blocked for significant

time, and proceeds with the speed of the slowest component. The frequent syn-

chronizations are usually implemented as message passing primitives, and may be

Chapter 5. Concurrent Replication of PADS 56

heavily affected by the arising of overheads for communication management and

communication bottlenecks. In order to exploit the maximum level of computation

parallelism, many research activities dealt with dynamic balancing of logical pro-

cesses‘ executions (both cpu-loads and virtual time-advancing speeds) by trading-off

communication, synchronization and speed-up, both in optimistic and conservative

approaches[62, 65, 67, 79, 124, 79]. Many approaches for the implementation of par-

allel and distributed simulations have been investigated in order to reduce the over-

head effects of distributed synchronization and communication in both optimistic

and conservative distributed simulations. The motivation for the communication-

reduction approach is the frequent adoption of networked clusters of PCs, in the

place of shared-memory or tightly-coupled multiprocessors, as the execution units

of the distributed simulation, primarily for cost reasons. The high network latency

in these clusters could play a fundamental role in determining the weight of commu-

nication and synchronization between the distributed model components. Attempts

have been performed in order to introduce adaptive behavior in the management of

the model at runtime, to control the arising of overheads due to the model dynam-

ics. Given the premises above, many results have demonstrated that a speed-up is

obtainable from parallel and distributed simulations, under both the optimistic and

conservative approaches, and for many system models and execution architectures.

In this chapter it is investigated a new direction for trying to maximize the speed-

up of the simulation processes and the utilization of computation (and communi-

cation) resources in the system architecture supporting the parallel or distributed

simulation. Our assumption, based on a common implementation rule, is that a

simulation-based analysis is not limited to the execution of a single run of a parallel

or distributed simulation, but requires many independent set of observations for a

correct and significant statistical analysis of results. Our proposal is to realize a

parallel and distributed simulation framework which is able to implement Concur-

rent Replications of Parallel and Distributed Simulations (CR-PADS), rather than

executing a sequence of multiple parallel or distributed simulation runs. The repli-

cation concept [64, 70, 76, 92, 98] is intended here as a mechanism that duplicates

Chapter 5. Concurrent Replication of PADS 57

the logical processes (LPs) of parallel and distributed simulation runs starting from

the initialization phase of every single run. Every replica is based on the same

model definition, and realizes and independent execution based on local initial pa-

rameters, variable factors for the analysis, and different random number generation

seeds. Even if the common aim in background is to obtain speed-up, this approach

is substantially different from the simulation Cloning concept [57, 85, 87, 88, 89].

Simulation cloning has been demonstrated a good technique for supporting “faster

than real time” simulation [86, 87, 88, 89] and “what if” analysis [57] being based

on the active cloning of multiple instances of the initial simulation process at “de-

cision points” that may be met during the simulation. In the CR-PADS approach

the replication of parallel and distributed simulation processes is performed only

by starting each replica from the beginning, and all the replicas do not necessarily

need to be synchronized (i.e. they are independent under the time management

viewpoint). The CR-PADS approach is not intended as a way to investigate all

the possible evolutions from a “decision point”, like in the cloning approach, but it

is intended as a way to maximize the speed-up and utilization of system resources

when implementing a set of parallel and distributed simulations of complex dynamic

system models. Our Replication approach is also quite different from the Multiple

Replications in Parallel (MRIP) approach adopted for the concurrent execution of

independent sequential simulation runs, like in the Akaroa2 framework [64, 70, 76].

The aim of MRIP in Akaroa2 is basically to give a simple way to the modeler for

initiating multiple independent runs of sequential simulators over different proces-

sors. It seems that Akaroa2 offers a controlled environment for launching multiple

independent sequential simulations, each one executed over a single CPU, without

managing the concept of parallel and distributed simulation. Akaroa2 incorporates

runtime data analysis and data collection services to analyze transient and steady-

state phases for each run, and to evaluate simulation ending conditions when the

planned level of confidence is obtained by the set of results. With respect to CR-

PADS approach, Akaroa2 and the MRIP approach may have limitations and could

not exploit the aggregate resources of a cluster of execution units, and the adoption

Chapter 5. Concurrent Replication of PADS 58

of distributed models, which are some of the motivations in favor of the parallel and

distributed simulation. The implementation of the CR-PADS mechanism has been

defined and tested over the Advanced RTI System (ARTÌS) framework (Chapter 3).

Results obtained for the simulation of a complex dynamic system model (i.e. a

wireless ad hoc network model) demonstrate that a speed-up gain can be obtained by

adopting the proposed replication approach as an alternative to a sequence of stan-

dalone parallel and distributed simulations. The speed-up is obtained up to a given

amount of replicas and has evidenced a dependence on the model characteristics.

Basically, trashing effects are introduced when the saturation of the computation

power of all the CPUs has been achieved. An excessive number of replicas would re-

sult in additional trashing effects under the management viewpoint. Given the light

and efficient implementation of CR-PADS the number of replicas causing trashing

is in a range that exceeds the typical amount of runs required to achieve a good

statistical relevance, i.e. thin confidence intervals, from the collected observations.

The chapter structure is the following: in Section 5.2 are outlined some concepts

about the parallel and distributed simulation cloning and replication; in Section

5.3 the key issues for the replication mechanism implementation and the ARTÌS

middleware are defined; in Section 5.4 a prototype wireless system‘s model and a set

of simulation results are presented to evaluate the concurrent replication approach;

in Section 5.5 conclusions are summarized.

5.2 Cloning and replication of PADS

5.2.1 MRIP

The Multiple Replications in Parallel (MRIP) technique is a technique that will be

cited here as a reference for this work [76, 70, 76, 92, 98]. This technique consists

in launching multiple runs of independent sequential simulations in parallel over

a set of concurrent CPUs. Every simulation run is executed from the beginning

up to the end on the same CPU, under the control of a single scheduler (i.e. a

Chapter 5. Concurrent Replication of PADS 59

monolithic sequential simulation). Some frameworks like Akaroa2 provide support

for the MRIP when launching simulations based on common sequential simulation

tools like PTolemy, NS2, OMNET++ [34, 32]. To the best of our knowledge, the

MRIP approach for parallel and distributed simulations is still to be investigated.

5.2.2 Parallel and distributed simulation

The architecture of the physical execution units (PEUs) can be organized in dif-

ferent ways: from a parallel multi-processor architecture with shared memory up

to a distributed cluster of PCs interconnected by LANs or even by the Internet.

Historically, the research community called a parallel simulation the concurrent exe-

cution of a single simulation run over a tightly coupled multi-processor architecture,

and a distributed simulation the concurrent execution of a single simulation run

over a loosely coupled set of execution units, each one running on a possibly differ-

ent HW architecture and separate local memory. In the optimistic approaches for

implementing parallel and distributed simulations, several simulation components

may bet on forecasting and computing one out of the possible evolutions, in order

to obtain a maximum exploitation of the parallel execution. In solutions like the

Time Warp [91], many model components advance their evolution without worrying

about causality maintenance at least until a violation of causality is revealed: in

such case a costly process called rollback is executed to restore the processes states

to a global safe-state. Such optimistic implementations were thought as a way to

maximize the utilization of expensive computation architectures. The efficiency of

optimistic implementations would depend heavily on the evolutionary characteris-

tics of the models: highly independent, predictable or self-correlated models would

behave better than unpredictable ones, since independent sub-models may have few

common “decision points” affecting each others‘ evolution, and the choices made at

“decision points” could be performed on the basis of more effective “oracles” that

could reduce the need for frequent rollbacks. Needless to say that rollbacks can

reduce the efficiency of the simulation process in significant way. In the conservative

approach, each “time advance” in the model evolution is made under the conserva-

Chapter 5. Concurrent Replication of PADS 60

tive assumption that all previous events have been processed in correct timestamp

order, by all the parallel and distributed model components. Frequent synchroniza-

tions (i.e. blocking and unblocking event executions) of all the model components

are performed for ensuring a conservative implementation of the causal order of

events.

5.2.3 IPC communication for parallel and distributed sim-

ulation

The communication among LPs in a parallel simulation is usually efficient and reli-

able because it can be supported by the classical mechanisms for local inter-process

communication (IPC) like pipes, FIFO channels and Shared Memory. Possible ad-

vantages given by local IPC communication mechanisms are: reliable communica-

tions, ordering maintenance of messages (excepted shared memory) and efficiency,

intended as high bitrate and low latency channels among LPs. The shared memory

solution requires a control of the concurrent accesses to mutual exclusive areas: the

efficient implementation of control primitives by the operating system is a necessary

condition for the efficiency of the communication. The problem with the parallel

simulation approach is given by the scalability of the model and simulation. In other

words, the physical execution architecture may be limiting the possible number of

concurrent LPs that can be executed by maintaining the advantages of concurrent

computation. The distributed simulation approach is based on the implementation

of concurrent LPs executed over distributed physical execution units (PEUs). The

advantages of distributed simulation architectures can be summarized as: i) theo-

retical scalability, given by the arbitrary extension of the PEU architecture, ii) the

possible geographical distribution of PEUs, which could be exploited to deal with

management and reliability issues, and iii) the fault tolerance based on the possible

substitution of unreliable or disconnected PEUs. The communication among LPs

can be supported typically by external inter-process communication mechanisms,

i.e. message passing based on packet-based communication over heterogeneous in-

Chapter 5. Concurrent Replication of PADS 61

terconnection networks. External IPC solutions are usually less reliable and efficient

than local IPC. The assumptions about the network infrastructures to be adopted

ranges from efficient LANs up to unreliable and high-latency Internet-based com-

munication. In some scenarios, both parallel and distributed PEUs can be used to

execute simulations. Given the low performance and reliability of network based

communication, it is self-evident that local IPC is preferable (if available) to be

exploited over parallel architectures.

5.2.4 Parallel and distributed simulation cloning

The simulation cloning technology was introduced as a concurrent evaluation mech-

anism, in the context of parallel simulation [85]. Simulation cloning allows the

creation of copies of a simulation process (clones) at “decision points”, which are

evaluated at runtime, but need to be defined preliminary in the model design phase.

When a set of clones is created, each clone would execute a different possible evo-

lution of the current scenario, each one related to any choice made at the decision

point. The main flow of events of a simulation may be recursively split in separate

flows characterizing a different evolution of clones, starting from the decision points.

The advantage of simulation cloning is basically obtained by the concurrent inves-

tigation of alternative choices, by exploiting the concurrent computation of parallel

and distributed architectures. Clones‘ evolutions originated by bad choices can be

killed at runtime to reduce the overheads. This technique was motivated by the

need to develop a parallel model of execution that supports an efficient, simple,

and effective way to evaluate and compare alternative scenarios, originated from a

common point in the model evolution. Parallel discrete event simulation can adopt

the cloning concept on the basis of the logical processes (LPs) execution model.

In [119] the cloning approach was designed for a more flexible system composition.

The cloning approach includes the management of different time axes in parallel, in

order to support a runtime forecasting functionality. Internal cloning and external

cloning techniques were suggested to clone the federates at runtime. In [57] the aim

to support users willing to run existing complex simulation models, gave reusability

Chapter 5. Concurrent Replication of PADS 62

and transparency issues a top role while enabling simulation cloning. This is the

reason for cloning design on HLA-compliant distributed simulations, which led to

the introduction of the concept of virtual federates [57, 87]. All the works in the

literature based on simulation cloning principles have their own motivations and

relevance, and illustrate interesting issues and solutions. Specifically, cloning was

demonstrated as a valuable technique for supporting “faster than real time” and

“what if” decision processes. The parallel and distributed simulation guidelines

applied to the cloning are interesting, because they allow to exploit the concept

of virtual logical processes (VLPs). Each simulation clone can be implemented

as a set of VLPs communicating by using virtual messages (VMs). The manage-

ment of VLPs and VMs allows an overhead reduction in the communication among

LPs, because many VLPs can be associated to a single LP, and many VMs can be

included in one real message exchanged among LPs. This approach was demon-

strated to reduce the overheads in the communication and execution management

of parallel and distributed simulation clones [57, 87, 88, 89]. More specifically, in

the management of clones‘ executions, a good runtime implementation would allow

to determine which LPs have diverging executions and which haven‘t, in order to

reduce the redundancy of LP copies and LP messages. Needless to say that the

design and implementation of runtime support for cloning of HLA-based parallel

and distributed simulations is quite complex and challenging effort. A preliminary

discussion of the design and implementation challenges and solutions can be found

in [57, 87, 88, 89]. On the other hand, the cloning technique can be considered a

good technique for speed-up purposes, but previous implementation works demon-

strated that the cloning implementation requires a complex management. This is

even more critical under HLA-based and Data Distribution Management (DDM)

based implementations. The specific benefits of simulation cloning in the analysis

of “faster than real time” and “what if” analysis, and the complex management

required, motivated our effort to exploit the replication concept of LPs with a more

simple approach.

Chapter 5. Concurrent Replication of PADS 63

5.2.5 The concurrent replication of parallel and distributed

simulations

The replication concept described in [70, 76, 92, 98] is intended here a mechanism

that duplicates the logical processes (LPs) of parallel and distributed simulation

runs starting from the initialization phase of every single run. Every replica is

based on the same model definition, and realizes and independent execution based

on local initial parameters, variable factors for the analysis, and different random

number generation seeds. In other words, many independent simulation runs are

executed concurrently by replicating them (just as clones) only at the beginning of

the simulation process. Each replica is an independent run, with its own seeds, and

model initialization. The implementation of the concept of replication of HLA-based

parallel and distributed simulations inherits some of the guidelines from the cloning

design, but also have a more clean and simple management.

Motivations for the concurrent replication

In the following will be explained the motivations for the proposal of a Concur-

rent Replication mechanism for Parallel and Distributed Simulation (CR-PADS) by

sketching the differences among the MRIP, the PDES and the CR-PADS approaches,

under the computation and communication viewpoints.

By assuming that a set of N CPUs are made available for computation (no matter

if they are belonging to parallel or distributed architectures) we want a set of many

independent runs to be executed. Obviously, the aim is to have the completion of

the overall simulation process in the lowest time and with the maximum utilization

of computation and communication resources. By focusing on the MRIP approach

the independent runs can be executed by launching in parallel the sequential simula-

tions over the available CPUs. It results that the possible concurrency of the model

execution cannot be exploited to obtain simulation speed-up, because every compu-

tation is linearly executed as a sequence of tasks. In this scenario, the model data

structures and computation must fit on the CPU system and may suffer memory

Chapter 5. Concurrent Replication of PADS 64

and computation limitations. Moreover if the available resources are more than the

number of runs required, the potential associated to some resources may remain not

exploited. The parallel (or distributed) discrete event simulation (PDES) approach

may introduce advantages, because every independent run could exploit the whole

computation architecture, by mapping and exploiting the degree of parallelism in-

herent to the model over the concurrent CPUs. This implies that a single run may

complete in less time than a sequential run. On the other hand, the linear execu-

tion of two (or many) runs may result in a speed-up depending on the number of

resources and the number of runs required under MRIP and PDES, respectively. It

is worth noting that the advantages of the aggregate memory architecture may as-

sist the model data structures management, and that the whole set of computation

resources (CPUs) can be exploited in parallel. Under the PDES scenario frequent

synchronizations are required among the model components (by assuming a conser-

vative event-based or time-stepped implementation). Every synchronization barrier

initially unblocks the concurrent computation of CPUs. As soon as the computa-

tion phase is terminated, every process starts a message passing phase to synchronize

again its execution with other processes. This implies that i) the whole set of pro-

cesses advance with the speed of the slowest (or more computation intensive) one,

and ii) the final phase before the synchronization barrier is communication-intensive

and may suffer additional delays due to the congestion and delays of the inter-process

communication infrastructure. The communication delay problem may result in a

high percentage of synchronization delay, under loosely coupled distributed archi-

tectures (e.g. over CPUs interconnected by LAN or Internet technology). In other

words, between any couple of synchronizations, every CPU swings between compu-

tation and idle periods, while the underlying communication infrastructures swings

between idle and communication periods, respectively. The interesting question we

want to investigate in this work is: could we try to obtain a more fluent computa-

tion and communication by merging the execution tasks of more than one parallel

or distributed simulation replica over the computation and communication architec-

ture? In other words, by launching multiple, independent and concurrent parallel

Chapter 5. Concurrent Replication of PADS 65

or distributed simulation runs over the system we may obtain that CPUs do not

spend so much idle time waiting for synchronizations because they can switch to the

execution of computation requests by the other replicas which already completed

their synchronization phase. The same happens under the communication system

viewpoint, because the message passing from all the replicas may increase the uni-

form utilization of the communication system. As a result, idle CPU times and idle

or congested communication channels could be obtained in a more smoothed way,

and this may result in additional speed-up with respect to the whole time required

for completing the set of simulation runs. The risk in this approach is to spend too

much time in switching processes‘ executions, and in the creation of communication

bottlenecks and livelocks, resulting in trashing executions. Our design is based on a

set of guidelines that we followed in order to obtain the maximum advantage from

the replication mechanism, by opportunely managing the processes executions and

communications, and by keeping under control the overheads introduced.

Advantages of the replication approach

Among the advantages of a concurrent replication approach for parallel and dis-

tributed simulations, at the top layer can be identified the possible speed-up ob-

tainable when executing a set of many independent runs, or the possible concurrent

analysis of different scenarios (defined at the beginning of the run). The implemen-

tation guidelines, partially inherited by the existing design of the cloning approach,

and partially object of our research, can result in additional advantages. As an

example, the structure of the ARTÌS framework has been defined such that a sep-

aration of the simulation and replication management is specifically oriented to a

clean design and to the exploitation of management techniques that reduce the

communication overheads.

Our choice is to create replicas by replicating virtual LPs that realize a simulation

run. A set of replicas of virtual LPs is managed as a single LP by the runtime

management. This simplifies the management under the ARTÌS viewpoint and

allows an optimization and balancing of the utilization of communication resources,

Chapter 5. Concurrent Replication of PADS 66

Figure 5.1: The ARTÌS architecture.

based on queue management, priority and fairness protocols. The management of

Random Numbers Generators (RNGs) is simple, because seeds can be chosen at the

beginning of the runs, without originating correlated sequences whose effect could

bias the analysis of results at the end of a set of simulation runs. This effect is

quite hard to manage in the cloning approach, since a set of clones always suffer a

correlation effect due to the first common subsequence of random numbers used.

5.3 The CR-PADS implementation

5.3.1 Implementation of replication in ARTÌS

The ARTÌS logical structure has been detailed in Chapter 3, given the top level

structure shown in Figure 5.1, ARTÌS supports the execution of LPs over the RTI

kernel. The RTI kernel implements time management policies, object ownership and

Chapter 5. Concurrent Replication of PADS 67

Figure 5.2: The ARTÌS and Replication architecture.

Chapter 5. Concurrent Replication of PADS 68

Figure 5.3: Parallel and distributed CR-PADS architecture.

Chapter 5. Concurrent Replication of PADS 69

declaration management, data distribution management, federation management

and other functions. At the bottom layer of the RTI, the Runtime Communication

layer (RTIComm) manages the communication based on the underlying communi-

cation system that connects the PEUs‘ architecture. Given the ARTÌS design, the

abstractions of LPs, messages, channels and simulation-runs appear as objects im-

plemented over the RTI kernel. In order to manage efficiently the management of

messages among LPs, an active thread executes the task of being waiting for mes-

sages on each channel, and demultiplexing messages to the above layers by adopting

an efficient callback mechanism. The time management layer also adopts callback

techniques to avoid polling techniques over the RTIComm layer, that may reduce

performances.

The Replication mechanism has been inserted in ARTÌS directly over the RTI-

Comm layer. This facilitates the need to maintain transparency to the LPs, and

light implementation of the replication mechanism. The choice to realize replication

at the above layer would have given benefits under the optimization viewpoint, at

the additional expenses of re-implementing ad hoc the replication services for each

time management policy. This means that our approach is simple even if it does not

provide space for optimizations like in the cloning approaches. On the other hand,

given the straight-forward adoption of replication services, and the assumption about

the independence of replicas, the need for replicas optimization management (e.g.

deleting redundant messages) has been considered a secondary factor in the design.

The Replication management layer is the funnel for replicas over the RTIComm

layer (see Figure 5.2. The Replication layer generates the replicas of each LP, and

manages (that is, multiplexes and demultiplexes) messages from/to LPs of each

replica. The set of processes and threads of each simulation replica has been de-

signed as a tree-like structure, whose inter-process communication is based on highly

efficient UNIX pipes [32]. UNIX pipes have been preferred to shared data structures,

because messages have limited size and shared data structures consistency manage-

ment would introduce latency and additional overheads. In the following, we illus-

trate the dynamic behavior of the Replication management layer with respect to the

Chapter 5. Concurrent Replication of PADS 70

replication of a LP in a parallel or distributed simulation run.

1) the user‘s simulator code is compiled with ARTÌS

2) the simulation run is started

a) execute initialization

b) call ARTIS init() API who creates LP father

3) ARTIS init() calls Replication init()

4) LP father calls RTI kernel init()

a) RTI kernel init() creates threads for communication and initialization

of LP replicas that will be created by the LP forker thread

b) each LP replica create a new pipe listener thread to receive messages

from the LP father

5) the LP father creates the LP forker process

a) LP forker process generates new replicas (upon request from the user)

6) LP father waits on its own communication pipes

7) Simulation run starts

a) once LP replicas send messages, the Replication layer sends the mes-

sage to the LP father pipe

b) once the LP father receives messages, it adds headers for multiplex-

ing and manage the message by adopting the standard RTI kernel

functions to send the message to the receiver LP.

c) once a message is received by the thread of the receiver LP, the receiver

LP demultiplexes the message to the pipes of the LP replicas, where

the message is handled

The set of operations 7.a.b.c is executed until the LP process terminates, and all

its resources are released.

5.4 Performance evaluation

To test the proposed framework was implemented a time-stepped, conservative,

parallel and distributed discrete-event simulation of a mobile wireless system.

Chapter 5. Concurrent Replication of PADS 71

5.4.1 Simulation system and simulation model

Our simulation testbed consists of two different environments: i) parallel and ii)

distributed discrete-event simulation of model components. In the parallel environ-

ment for simulation the model components are executed as logical processes over a

dual processor physical execution unit (PEU). Specifically, the PEU is an Intel Dual

Xeon Pentium IV 2800 Mhz, with 3 GB RAM, Debian GNU/Linux OS with kernel

version 2.6. In the distributed environment the logical processes are mapped over a

set of physical execution units (PEUs), connected by a physical LAN network (Fast

Ethernet 100 Mb/s).

As a testbed for the replication framework, was realized a conservative, time-

stepped simulation of a complex and dynamic model. The simulation model we

considered for the simulations is a wireless mobile ad hoc network model. The

mobile ad hoc network is realized by Simulated Mobile Hosts (SMHs), each one

characterized by random mobility and CBR traffic (that is, ping messages sent to

all the neighbor SMHs in their reception area). The number of simulated SMHs as

the effect of control the average SMH density in the system. The SMH mobility

causes changes in the network topology and the SMH dynamics. Since the model

design is out of scope in this thesis, I’ll simply characterize the model execution by

noting that: i) the computation required for each SMHs per timestep is in the order

of O(#SMH2) and, ii) the communication and synchronization required among

SMHs is in the order of O(K ∗ #SMHs) per timestep. All the model choices have

been defined in order to realize a stressing test for our simulation framework.

5.4.2 Performance results

In this section will be presented the results of some testbed simulation experiments

executed to analyze the performance of the proposed CR-PADS approach in presence

of parallel and distributed environments.

It were performed multiple runs of each experiment, and the confidence intervals

obtained with a 95% confidence level are lower than 5% the average value of the

Chapter 5. Concurrent Replication of PADS 72

performance indices shown.

In the following will be defined M as the number of physical execution units

(PEUs) supporting the simulation execution, and N as the total number of logical

processes (LPs) implemented for each simulation run. As mentioned above, each

PEU is composed by a dual processor machine. With the “CR-PADS OFF” label

we identify a legacy parallel and distributed simulation approach: that is, simulation

runs are executed in sequential order, by activating N LPs at a time. With “CR-

PADS ON” we identify a parallel or distributed simulation executed under the effect

of the CR-PADS replication approach described in previous sections. The “number

of replications“ is intended as the number of independent simulation runs executed

(both sequentially when CR-PADS is OFF, and in concurrent way when CR-PADS

is ON).

In Figures 5.4, 5.5 and 5.6, will be reported results for the parallel simulation

environment (M=1, N=2). Each figure shows the Time (WCT) required for com-

pleting the simulation processes. Figure 5.4 shows the effect of 500 SMHs involved in

the simulation (250 SMHs over the N=2 LPs executed over the M=1 dual processor

PEU). Figure 5.5 and 5.6 show the same index with 1000 and 2000 SMHs, respec-

tively. Results confirm that the CR-PADS approach outperforms the sequential

approach by considering the WCT required to complete a whole set of simulation

runs. Each run is defined with fixed size of 300 timesteps. In Figure 5.4, by in-

creasing the number of concurrent replications (up to 20), the CR-PADS results are

better than the traditional parallel simulation approach. By increasing the num-

ber of SMHs up to 1000 (Figure 5.5) and 2000 (Figure 5.6) we are increasing the

percentage weight of local computation, with respect to the percentage weight of

communication, in the sequence of synchronization steps, for each SMH during the

simulation runs. This means that we are pushing the computation to saturate all

the CPUs computation power. When the computation load for LPs asymptotically

saturates the CPU computation power, the CR-PADS approach becomes less effi-

cient than the legacy PADS approach, because it does not longer exploit any idle

CPU time in order to execute more concurrent replicas. It is worth noting that

Chapter 5. Concurrent Replication of PADS 73

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 2 4 6 8 10 12 14 16 18 20

W
al

l C
lo

ck
 T

im
e

(s
)

Number of Replications

Ad Hoc Network, M=1, N=2, 500 SMHs

CR-PADS OFF
CR-PADS ON

Figure 5.4: total WCT vs. Number of runs (replications) Parallel simulation

scenario: M=1, N=2, 500 SMHs.

the break-even in the number of replicas is around 15 in Figure 5.5 and around 6

concurrent replicas in Figure 5.6.

As it was expected, the CR-PADS approach introduces overheads when the num-

ber of replicas is high and the computation of few replicas saturates the computation

power of all PEUs. It is worth noting that in all the proposed scenarios, the CR-

PADS approach can give a speed-up effect, at least limited to the initial subrange

in the number of concurrent replicas.

By focusing our attention to the distributed environment (with M=3 and N=6),

in Figures 5.7, 5.8 and 5.9 are illustrated the same results shown for the parallel

simulation scenario. It is worth noting that the average communication latency of

distributed environments is at least one order of magnitude bigger than the aver-

age latency experienced in the parallel architecture. A significant latency implies

long time required to achieve synchronization at every timestep. This would trans-

late in better opportunities for CR-PADS to optimize the concurrent execution of

many runs, by exploiting a better utilization of the PEU computation power, and by

Chapter 5. Concurrent Replication of PADS 74

 0

 50

 100

 150

 200

 250

 0 2 4 6 8 10 12 14 16 18 20

W
al

l C
lo

ck
 T

im
e

(s
)

Number of Replications

Ad Hoc Network, M=1, N=2, 1000 SMHs

CR-PADS OFF
CR-PADS ON

Figure 5.5: Total WCT vs. Number of runs (replications) Parallel simulation

scenario: M=1, N=2, 1000 SMHs.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 1 2 3 4 5 6 7 8 9 10

W
al

l C
lo

ck
 T

im
e

(s
)

Number of Replications

Ad Hoc Network, M=1, N=2, 2000 SMHs

CR-PADS OFF
CR-PADS ON

Figure 5.6: Total WCT vs. Number of runs (replications) Parallel simulation

scenario: M=1, N=2, 2000 SMHs.

Chapter 5. Concurrent Replication of PADS 75

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 2 4 6 8 10 12 14 16 18 20

W
al

l C
lo

ck
 T

im
e

(s
)

Number of Replications

Ad Hoc Network, M=3, N=6, 500 SMHs

CR-PADS OFF
CR-PADS ON

Figure 5.7: Total WCT vs. Number of runs (replications) Distributed simulation

scenario: M=3, N=6, 500 SMHs.

 0

 100

 200

 300

 400

 500

 600

 0 2 4 6 8 10 12 14 16 18 20

W
al

l C
lo

ck
 T

im
e

(s
)

Number of Replications

Ad Hoc Network, M=3, N=6, 1000 SMHs

CR-PADS OFF
CR-PADS ON

Figure 5.8: Total WCT vs. Number of runs (replications) Distributed simulation

scenario: M=3, N=6, 1000 SMHs.

Chapter 5. Concurrent Replication of PADS 76

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 1 2 3 4 5 6 7 8 9 10

W
al

l C
lo

ck
 T

im
e

(s
)

Number of Replications

Ad Hoc Network, M=3, N=6, 2000 SMHs

CR-PADS OFF
CR-PADS ON

Figure 5.9: Total WCT vs. Number of runs (replications) Distributed simulation

scenario: M=3, N=6, 2000 SMHs.

reducing the global WCT required for completing the simulations. The results con-

firm the expectations: for a number of concurrent runs ranging from 1 up to 20, the

CR-PADS mechanism is able to give significant speed-up both in the 500 and 1000

SMHs scenarios (Figures 5.7 and 5.8). When the scenario becomes computation-

intensive (2000 SMHs in figure 9) the CR-PADS approximates the same results than

the legacy PADS approach, and do not introduce significant overheads in the range

of 1 up to 10 concurrent replications.

Figure 5.10 illustrates the rate of event processing under both parallel and dis-

tributed scenarios obtained for 10 simulation runs executed with and without the

CR-PADS framework in background. By looking at the Figure 5.10, CR-PADS al-

lows a high event computation density when the computation load in each timestep

do not saturate the available CPUs (that is, when SMH=500..1000). When the

computation load increases (SMH=2000) the trashing effect of CR-PADS appears,

basically because there is not space for additional concurrency in the computation.

In the distributed scenario, the high latency of communication reduces the compu-

Chapter 5. Concurrent Replication of PADS 77

Figure 5.10: Analysis of event processing rate.

Figure 5.11: Analysis of network communication throughput.

Chapter 5. Concurrent Replication of PADS 78

tation concurrency in legacy distributed simulations. As expected, the CR-PADS

mechanism is able to maintain a high computation concurrency. Figure 5.11 shows

the effect of the communication layer during the execution of distributed simula-

tions. It is clear how the CR-PADS mechanism is able to increase the throughput of

communication channels even when the computation load is low. Conversely, when

CR-PADS is off, the communication channels are under-utilized. When the com-

putation load asymptotically saturates the available CPUs, both the CR-PADS On

and CR-PADS Off implementations converges to the same network utilization. This

is due because the network communication is generated as a function of the events

processed, that is the computation power, which is the current system bottleneck.

5.5 Conclusions and future work

In this chapter has been proposed and investigated a new direction for increasing

the speed-up of a parallel or distributed simulation. This result has been possible

thanks to a better utilization of CPU and communication resources. Since a typical

simulation-based investigation requires to collect many independent observations

for a correct and significant statistical analysis of the results, we think that our

approach could be really valuable in the implementation of simulators.

Our future work will include the optimization of the proposed framework, and

the investigation of adaptive automation of concurrent replication. We plan to inves-

tigate the adoption of CR-PADS under other conservative and optimistic approaches

for parallel and distributed simulation, and under massive parallel computation ar-

chitectures. We also plan to integrate CR-PADS with a framework for adaptive load

balancing and migration of simulated entities (GAIA), and with the components for

runtime transient and steady-state analysis of data, confidence interval estimation,

and run termination management.

Chapter 6

A Migration-based Architecture for

Internet Games

“Computer games don‘t affect kids, I mean if Pac-Man affected us as kids,

we‘d all be running around in darkened rooms, munching magic pills and

listening to repetitive music.”

Kristian Wilson, Nintendo, Inc, 19891

Traditionally the simulation community has been composed by at least three

sub-communities of primary relevance: high speed computing, military (i.e. Dig-

ital Virtual Environments) and gaming. The last, year by year, has increased its

importance due to the high market impact of the gaming industry. Under the tech-

nical viewpoint the Internet Gaming field has a lot to share with the parallel and

distributed simulation background. In a lot of cases a game can be referred as a

simulation with relaxed temporal and correctness constrains. With different degrees

of relevance, in both cases, synchronization, fault-tolerance, performance and the

support of massively populated scenarios are a relevant subset of the main prob-

lems to understand and address. Given the depicted technical situation and the

requirements, the goal of the work described in this chapter is to leverage from

the existing simulation technology to improve the the software architectures usu-

ally built to support massively populated Internet Games. The simulated entities’

1A few years later appeared rave parties, techno music and ecstasy...

Chapter 6. A Migration-based Architecture for Internet Games 80

migration concept (previously presented in Chapter 4.4) will be revised to improve

overall performances but also to obtain a better “fairness” in the gaming evolution.

In recent years many popular interactive computer games have gained online

remote multiplayer functionalities, supported by standard Internet communication

protocols and architectures. Due to the heterogeneous communication infrastruc-

tures and network asymmetries, some users (i.e. clients) may be suffering slow,

congested and unreliable Internet connections, while others may have access to fast

and reliable links. A different rate and latency in the delivery of users’ commands

and event notifications may lead to unfairness issues during the game play, specifi-

cally, for the class of real time and interactive games. A dynamic adaptation of the

gaming architecture to the limitations of the communication infrastructure could be

exploited to reduce these problems. The communication network topology and per-

formance should be considered in the management of the client allocation to the set

of multiple servers. In this chapter is presented a simple client migration algorithm

which can be adopted on a generic multiplayer, multi-server online gaming architec-

ture. Client migration among the servers of the gaming infrastructure is exploited

to adapt to the dynamic performances of the general communication network infras-

tructure. The proposed mechanism has been modeled and simulated for the class

of distributed multiplayer and multi-server interactive games, implemented over a

general communication network infrastructure. Results show a significant fairness

improvement, more homogeneous performances, and the absence of significant over-

heads.

6.1 Introduction

The explosive growth of the Internet, and the even widely deployed access and mo-

bile connectivity to the Internet infrastructure and services, motivated the designers

of computer-games to create new, interactive, and distributed multiplayer games, or

even to add online multiplayer capabilities to existing ones [44]. The aim of an in-

teractive multiplayer game is to allow a set of players’ avatars to interact in a virtual

Chapter 6. A Migration-based Architecture for Internet Games 81

environment, by following specific interaction schemes and game rules. Avatars are

implemented as client applications coordinated and managed by a set of distributed

servers. The gaming infrastructure is realized by the set of servers, the distributed

client applications, the interaction rules and game management protocols, and the

interconnecting communication network infrastructure. In simple interactive gam-

ing infrastructures, the interaction policy may be straight-forward: e.g in turn-based

games, every client gets its own turn to ‘move” and every other client would see the

action as the expected interaction event (like in a multiplayer cards game). This

gaming infrastructure does not have critical network and fairness requirements [126],

because every user waits its turn until other users performed their own actions in

a predefined order. The more challenging and attractive set of today’s multiplayer

games lets the users to live and act by proactively generating local and personal

actions (i.e. events), which may affect every other user within the game context

[43, 81]. The density and the timing constraints of interactions among the dynamic

set of clients, obviously depends on the game type and characteristics. It is worth

noting that massive, highly interactive games may be critical to be supported in

a distributed way, under the communication viewpoint. In this chapter the focus

is on the class of highly interactive distributed multiplayer games, where each user

may take any decision at anytime (i.e. with no predefined turns), like in a virtual

battlefield game. For this class of games, the communication protocols, the gaming

infrastructure, and the communication infrastructure are far more interesting and

challenging to be designed. The main problem faced in this work is the hetero-

geneity and dynamicity in the latency that could exist on the Internet connections

among many peer-players connected to the distributed multi-servers architecture

supporting the game execution.

6.1.1 Work motivation

Many multiplayer real-time games (e.g. Ultima Online [110]) require that the player

sends ‘commands” (e.g. walk, take objects, fight, shoot) to a virtual character (i.e.

the avatar). Commands are messages sent to one server, over the communication

Chapter 6. A Migration-based Architecture for Internet Games 82

infrastructure (i.e. the network), in order to be evaluated and executed. Event

execution generates causally dependent actions and environment changes, to be

immediately notified to other characters in the gaming environment. Failing to send

a command or an event message, or sending it too late, may cause damages to

the avatar evolution (death, injury, loss of resources), and may result in unjustified

penalties for the player. For this reason, users with high-latency or low-bandwidth

Internet connections may be more disadvantaged than their opponents supported

by fast connections. The unfairness problem frequently leads to a generalized users’

annoyance: slow users get frustrated because they lose easily despite their skills

[83, 109], while fast (and fair) users get bored because they win easily thanks to

their network performances. This would translate in less users buying the game and

subscribing the online gaming services.

The communication protocols adopted for these games usually do not offer spe-

cific solutions for this problem. On the other hand, a general conservative approach

is to send less data to slow users [123], thus lowering the game detail. The solution

to achieve fairness by reducing the game detail could be unpractical and question-

able, under the player satisfaction viewpoint. Other gaming infrastructures could

obtain an improved fairness by exploiting network services implemented below the

application, without having to touch the internal details of the game protocol. On

the other hand, this would require a complete management of the Quality of Service

over end-to-end connections, which is not currently implemented and supported on

the Internet.

My proposal, described in this chapter follows a complementary approach. It is

assumed a common network scenario, an online (Internet-based) multiplayer real-

time game supported by a distributed multi-server gaming architecture. I argue

that the fairness may be improved by acting on the dynamic migration of clients

among servers, with minor changes to the game code, and without requiring to

rewrite and redesign any communication protocol. Moreover, it is not assumed any

specific gaming protocol semantics, because the interest is in proposing and evalu-

ating a mechanism that could be adapted to any generalized gaming architecture

Chapter 6. A Migration-based Architecture for Internet Games 83

[80, 121]. In addition to the previous considerations, another motivation for the

proposed migration-based approach is explained in the following. Let us assume

that upon the initial connection of a new player to the gaming infrastructure, the

client application is connected to the server with the best tradeoff between network

performance and server load, among the available ones. Many policies could be

defined to realize a ranking evaluation of available servers. Unfortunately, due to

the highly dynamic characteristics of server loads and network performances, any

optimal initial allocation would soon become sub-optimal. As an example, network

loads, link utilization and router congestion over generalized multi-purpose networks

are subject to fast and unpredictable changes, so that any optimal choice at time

t may become suboptimal after few seconds. In practice, the proposal is to let the

clients, being connected to one server, to migrate towards the “most performant”

server evaluated at runtime. This migration should be evaluated on the basis of

server-measurement metrics and heuristic policies. Also, the density of migrations

should be controlled, as an example, by performing migrations only at predefined

time-interval boundaries, or after some critical events occurred. In this way, any

client should pursue the most performant server, by dynamically measuring the

network and server performances. The performance estimates and the migration

heuristic should be defined in order to avoid overheads and useless fluctuations of

clients.

This chapter is structured as follows. In Section 6.2 it will describe a general

architecture for online massive real-time multiplayer games, named MMORPGs, or

Massive Multiplayer Online Role-Playing Games [122, pp. 1–2]. It will be illus-

trated the implementation and the behavior of the proposed gaming architecture,

together with the fairness problems that may be obtained. In Section 6.3 will be

sketched the model of the proposed architecture, and defined the set of parameters

that will be adopted in the model to characterize the gaming and the network issues

used in the simulations. In Section 6.4 it will discussed the implementation of the

client migration, devoted to the improvement of the game fairness issues. In Section

6.5 it will present the experimental results of the simulation tests. Different imple-

Chapter 6. A Migration-based Architecture for Internet Games 84

mentations of the migration scheme and heuristics will be discussed and evaluated.

Conclusions and future works will conclude the chapter.

6.2 Online gaming architectures

Big multiplayer gaming systems are usually based on a pool of server geographically

distributed across one or more countries [74]. These servers share the knowledge

about the ‘simulated world” where the characters move and act. When a user wants

to play the game in multiplayer mode, he/she is required to connect to one of the

available servers, where the game activity is currently on, then he/she starts playing.

The choice of the server is usually made by following two possible implementations:

i) a round-robin DNS entry or ii) the “nearest server” selection. The concept of

“near” server is usually intended as the “geographically nearest” to the client. Both

of these solutions are not guaranteed to provide the best performances. Another so-

lution is to connect to the “topologically nearest” server, i.e. the server reachable by

traversing the minimum number of intermediate routers within the network struc-

ture. Additional advantage could be given by taking into account the congestion

along the path to connect to the server.

The goal is to analyze how the communication between a client and one of the

servers could be improved without touching the network communication protocols,

and by creating an additional, external layer with respect to the gaming infrastruc-

ture [103]. Specifically, the class of games resulting interesting contains the Massive

Multiplayer Online Role-Playing Games (MMORPGs) [122, pp. 1–2]. This class of

games is becoming more and more popular on the Internet, and includes multiplayer

games that simulate a “virtual world”. A great number of characters, either under

human or computer control, live and act in the virtual world, performing some co-

operative or competitive tasks. MMORPGs are the computer-based counterpart

of the well-known RPGs (Role Playing Games) [129]. Each new player creates its

own avatar with a set of characteristics (e.g. strength, intelligence, initial resources)

and starts playing the avatar life in the simulated world, by interacting with other

Chapter 6. A Migration-based Architecture for Internet Games 85

players in order to complete tasks, to compete with enemies, to collect shared and

available resources, and to improve the characteristics and skills of his avatar.

MMORPGs may involve a great number of concurrent players. While in other

games, like strategic and first-person-shooters [69, 127], the maximum number of

interacting players seldom exceeds a dozen [73], MMORPG servers usually have to

manage hundreds, or even thousands of avatars co-existing in the same virtual world

[68].

6.2.1 MMORPGs gaming architecture

The typical MMORPGs gaming structure is a simple client-server architecture: each

player runs a client, which connects to one out of a pool of many servers. The client

and the server start to exchange gaming data as long as the user plays, then the

client disconnects. Basically, the gaming protocol governing the system evolution

is a simple request/reply scheme: clients send commands to one server, and servers

synchronize and send “replies” to the clients. A client/server connection starts when

a client sends a login request to one of the servers. In the performed simulations, it

is implemented a round-robin DNS entry selection of the server to connect to. When

a server receives a login request, it performs a service admission control, to admit a

limited maximum number of clients, and then it sends a reply, either an accept or

a reject message to the client. Upon a negative answer, the client will retry with

another server in round robin fashion until a server accepts it. After a successful

“login” the client starts sending play requests that will be received by the server,

enqueued and processed on the next timestep boundary. After having processed

a request, the server replies to the client by sending him the updated information

about the “world” evolution. This communication and synchronization process goes

on until the client stops playing. When the client stops playing, it sends a logout

request to the server, it waits for an acknowledgment, and then it quits the game. To

maintain full synchronization for inactive players, servers send proactively updates

to every client in every timestep. The implemented server synchronization protocol

Chapter 6. A Migration-based Architecture for Internet Games 86

is trivial: each server periodically sends the system status updates to every other

server.

The assumptions include that the servers are connected to each other by high

speed links. Every server maintains a replica of the simulated world where the lo-

cally managed subset of avatars evolves by executing the player’s commands. Every

player continuously sends unicast messages to its server, while servers send update

information to every other server in order to manage the time synchronization and

updates of the virtual environment. This is an inefficient way [59] to handle syn-

chronization, and state sharing, in particular when the number of servers is high.

The number of messages among servers grows as Θ(n2) where n is the number of

servers. These system (and modeling) assumptions for this work were selected in

order to consider the most general scenario, and a “worst case” implementation that

would be highly affected by the distributed communication bottlenecks. It is worth

noting that this choice about the server-to-server communication would not affect

positively the results of the proposed migration mechanism. Also, the model do not

depend on a specific network topology.

6.2.2 Time management and fairness

Let’s define as Virtual Time (VT) the time in the virtual world, as Simulation

Time (ST) the time concept considered for synchronization issues in the distributed

simulation, and as Wall Clock Time (WCT) the time we are living [78, pp. 27–

30]. The VT is defined by discrete steps of fixed duration (typically in the order of

tenths of a WCT second). During each VT step a client can perform at most one

move, that is, a single command can be sent from the client to the server. With

this system (and modeling) assumption, can be controlled the maximum speed of

every player under a common upper bounded speed limit. Every command and

update received during step t − 1 is enqueued on the server managing the avatar,

and it will be processed at the beginning of the step t in FIFO order, by causing an

update of the virtual environment. The timestepped approach for time management

introduces a controlled upper bounded delay for the execution of commands. This

Chapter 6. A Migration-based Architecture for Internet Games 87

can be exploited to introduce a positive fairness principle for clients’ commands.

The fairness can be improved because fast clients can be limited to perform only

one move per timestep, and the timestep size can be tuned such that the same

opportunity can be given, on the average, to the majority of slow clients. In this

way, all the clients achieve more chances to fairly compete under the remote control

by their respective players. Obviously, the timestep duration is a tuning parameter

and should not be excessive, in order to maintain a smoothed game evolution. In

addition, a MMORPG presents the same issues and the same concept of a real-time

simulation. Like in real time simulations, under the interaction viewpoint, the speed

gap between the VT of the avatars and the WCT of the players must be negligible.

6.3 The gaming architecture model

In this section it will be described a simple and generic model for the architecture of

a massive online multiplayer gaming architecture. The target of this modeling and

simulation investigation will be a qualitative comparison between a “classic” gaming

and network infrastructure scenario and the same scenario with the effects of the

migration mechanism. The definition of an accurate network model or a specific

network infrastructure, is out of scope for this goal, because it would be difficult

to design and would result in less general results [77]. For the same reasons, I do

not aim to define an accurate model of a specific game, and its architecture, but

is more interesting to characterize a class of online interactive games in general.

On the other hand, I would like to capture the network and gaming infrastructure

dynamics and characteristics in our model, in order to obtain significant results. To

this end, it was performed an accurate selection of modeling parameters and their

respective values and distributions.

6.3.1 The model parameters

The communication protocol at the basis of the proposed architecture has been de-

veloped after the accurate analysis of network traffic traces obtained by different real

Chapter 6. A Migration-based Architecture for Internet Games 88

games [40, 43, 58, 90, 110]. Since most of these games are commercial and propri-

etary it was impossible to directly examine the protocol details. The only possibility

was to capture and analyze the real network traffic generated, to infer the param-

eters’ values to be adopted for the communication protocols’ modeling2. It must

be cleared that the traffic model obtained is characterizing the considered gaming

application in isolation. Additional network traffic generated by concurrent applica-

tions in real systems would increase the network congestion and the communication

bottlenecks. This fact is not critical for this analysis and results, since the interest

in qualitative comparison of alternative solutions, under the same assumptions.

6.3.2 The simulated network model

The focus of the network modeling is to determine transmission times for the packets,

over generalized network infrastructures (inspired by the Internet).

As in real scenarios, it was modeled a packet based network communication based

on a standard TCP/IP Internet protocol architecture. On the other hand, it was

not included a detailed management of transmission failures and packet retransmis-

sions. The network is assumed to be reliable, since the scope of this analysis does

not include fault-tolerance, routing and link failure issues [51]. It is assumed that

communication paths are reliable and the effect of network congestion are modelled

as a variable network latency parameter. This latency effect represents the only

overhead effect of network congestion included in the model. Packet loss will be

modeled as consequence effect of communication delays. By relaxing most of net-

work details, it is assumed that transmission times are mainly determined by link

bandwidth and link latency network parameters [77]. It is assumed that the network

is organized in a numbered set of A areas, roughly corresponding to big Autonomous

Systems, Internet Service Provider networks or Internet carriers (see Figure 6.1).

A parameterized matrix L is defined, such that each pair of network areas, e.g.

(i, j), 0 ≤ i, j ≤ A, is assigned a base latency Li,j. This base latency value pa-

2Thanks for their help the system administrators of Midian and Nexus gaming networks’ in-

frastructures [19, 20]

Chapter 6. A Migration-based Architecture for Internet Games 89

rameterizes a right-shifted lognormal distribution. This distribution is adopted by

a pseudo-random generator, to obtain synthetic samples of the latency values for

simulated packets traveling from area i to area j and vice versa. The matrix is

configured with low base latency values when i = j (i.e. when the two hosts belong

to the same area). The right-shifted distribution offset is motivated by the char-

acteristics of the link technology, introducing a ‘lower bound” for their respective

latencies. Dynamic congestion can be modeled at runtime during the simulation by

varying the base latencies values in the matrix L. Each client and server host is

assigned a connection class that identifies the type of connection the host adopts

(i.e. analog modem or DSL for clients, various kinds of ATM links for servers). Each

connection class corresponds to a nominal bandwidth value, affecting the speed of

packets sent and received by that host h. This parameter is also used to define a

latency multiplier factor Kh that will be used to determine the network latencies.

Both servers and clients are distributed in uniform way in the network areas. When

one host (hi) belonging to area i sends a packet to another host (hj) belonging to

area j, we assume that this packet will follow a path whose end-to-end latency can

be modeled as follows. The end-to-end latency is calculated as a summation of

“intra-area” and “extra-area” latencies and transfer time. Transfer time is defined

as the packet size divided by the link bandwidth of the slowest link in the path,

with no variability introduced by Medium Access Control and Data Link policies.

As an example, a packet sent with an analog modem comes out from the modem at

33 Kbps, no matter how much fast it will travel in the rest of the network.

If the hosts hi1 and hi2 belong to the same area i, we call the end-to-end latency

as “intra-area latency”. It results that “intra-area base latencies” can be found on

the diagonal of the matrix. In this scenario, the end-to-end latency is determined

as a composition of two expressions:

Latency(hi1, Khi1
, hi2, Khi2

) = Khi1
∗ Li,i + Khi2

∗ Li,i (6.1)

where Khi1
∗ Li,i is the initial “intra-area latency” of host hi1, and Khi2

∗ Li,i is the

final “intra-area latency” of the destination host hi2, ∀hi1, hi2 ∈ i.

Chapter 6. A Migration-based Architecture for Internet Games 90

Figure 6.1: An example of the network areas

If hi and hj belong to different areas, the overall latency is determined as a

composition of three expressions:

Latency(hi, Khi
, hj, Khj

) = Khi
∗ Li,i + Li,j + Khj

∗ Lj,j, (i 6= j) (6.2)

where Khi
∗ Li,i is the initial “intra-area latency” of area i, Lij is the intermediate

“extra-area latency” which is the latency of the network connecting the originat-

ing and destination areas, and Khj
∗ Lj,j is the final “intra-area latency” of the

destination area j.

The choice of the model parameter values (distribution parameters [41, 104],

connection classes characteristics [112], percentage of connection classes) has been

made i) with direct tests and traffic analysis of real network connections [90, 58],

ii) by gathering data from some Italian ISPs, carriers and important web sites, and

iii) by collecting information from other papers and articles.

In Figures 6.2 and 6.3 are shown the experimental ping-time (latency) results

obtained when investigating the latency distribution inside the GARR network, and

between the GARR network and the Teleglobe network (belonging to two different

autonomous systems). This shows that the typical latency distributions for ping

times, both inside the same area (Figure 6.2) and across two or more areas (Figure

6.3), could be approximated by a right-shifted lognormal distribution [102, 96].

Chapter 6. A Migration-based Architecture for Internet Games 91

Figure 6.2: Latency inside the GARR Network [8]

Figure 6.3: Latency between the GARR Network and the Teleglobe Network

Chapter 6. A Migration-based Architecture for Internet Games 92

Name Bandwidth (KB/sec) Presence

DS3 44, 736 30%

STS-1 51, 840 10%

STS-2 103, 680 20%

STS-3 155, 520 10%

STS-6 311, 040 10%

STS-9 466, 560 10%

STS-24 1, 244, 160 10%

Table 6.1: Model parameter distribution of carriers and big ISPs

The distribution of the various connection classes for carriers and big ISPs has

been determined for our model, thanks to information from the Italian Internet

Exchange [105]. The resulting information about link-types, link-bandwidths and

percentage of “presence” values are reported in table 6.1.

The distribution of the various connection classes for gaming clients has been

determined for our model, thanks to information from the Midian gaming network

[19]. The resulting information about line-types, upstream and downstream line-

bandwidths, connection class latency multipliers (Kh) and the percentage of “pres-

ence” values are reported in table 6.2.

To complete the network model parameterization it was analyzed the traffic

generated by real games with the aim of discovering information about the packets

size distribution and packets’ correlation. The proprietary protocols and packet

formats used by gaming platforms hidden all details, hence the observation was based

on network monitoring. It was discovered that while clients send out few different

types of packets, a server generates variable sized packets. Anyway, the typical

packet size is 42 bytes. Hence, it was considered as the standard play request/reply

packet size, and we used different sizes for other types of event messages.

Chapter 6. A Migration-based Architecture for Internet Games 93

Up Down Latency Presence

(KB/sec) (KB/sec) multip.

POTS 36.6K 27 27 5.0 4%

POTS 56K 40 25 4.0 24%

ISDN 64K 64 64 3.0 20%

ISDN 128K 128 128 3.0 6%

ADSL 256K 128 256 2.0 20%

ADSL 640K 128 640 2.0 14%

Optical fiber 10000 10000 2.0 12%

Table 6.2: Model parameters distribution of gaming clients

6.3.3 The server model

While it was possible to find good data and references about traffic and network

characterization of modeling parameters [40, 72, 73], some difficulties was experi-

enced in finding “real world” values for the server computation model parameters

(e.g. CPU times). Hence, to characterize the CPU computation time distributions

of the servers was executed external observations, and was measured the time passed

from the arrival of a request to the server and the departure of the reply.

6.4 The migration mechanism

In classical gaming implementations, each client chooses a server at the beginning of

its playing, and keeps using it until the end of the playing session. Currently, there

is no information to assist the client in making a “good choice” at the beginning of

the game session. For this reason we suggest the introduction of a client migration

mechanism in our architecture. The migration mechanism would allow a client to

disconnect from a server, and to connect to another server, while continuing to play

in user’s transparent way. The migration mechanism should be activated when a

client “realizes” that the server connection is slow, or another server is reachable by

Chapter 6. A Migration-based Architecture for Internet Games 94

means of a more fast connection. In this way a better exploitation of the overlay

network of server replicas could be performed. One critical point about the migration

mechanism is the design and implementation of the migration heuristics to assist

clients in the decision to migrate, and also in the selection of a new destination

server. In the following it will be described two approaches that was considered in

this analysis.

As said before, the communication between a client and a server is affected

by two important factors: bandwidth and latency. From the client viewpoint, the

bandwidth factor has less influence over the game performances: a high percentage

of the packets are quite small [50] so that they can be sent on a low bandwidth link

without saturating it. Anyway, the effect of a low bandwidth link can be mitigated

by sending less detailed information to the players on that link. The most critical

parameter we are dealing with is the end-to-end (E2E) network latency. The E2E

latency is a composition of delays introduced by single network links realizing a path

from the client to the server and vice versa. Most of the times, the latency of the first

hop (usually from the client to the router of its area boundary) cannot be negotiated

or controlled by the client. On the other hand, the client can control the game server

to connect to, and this allows the client to have many possible alternative paths with

different latency performances to equivalent servers. While the first communication

step usually has quite low latency variance, the path between the originating ISP and

the remote server can have much less predictable latencies due to external Internet

traffic aggregation. Due to the network latency variations, the initial choice of the

optimal server could not be valid indefinitely. To maintain the optimality, a runtime

adaptive selection and migration to adapt to the network conditions is preferable.

The client migration can improve the fairness, and can be applied with a limited

amount of work on the existing game code, while other methods would require

relevant changes to the protocols [99, 121].

Big software houses that create and distribute online multiplayer games consider

the network latency a serious problem, such that they manage and invest in servers

and networks to offer their customers good network performances and to be compet-

Chapter 6. A Migration-based Architecture for Internet Games 95

itive with other game producers. Other gaming networks [7, 21, 28] are independent

to software houses that produce games, and appear to be quite open to publish

technical details about their network structures and protocols.

To maintain the E2E latency upper bounded, many gaming infrastructures, and

specifically MMORPGs infrastructures, consider the network partitioned in different

wide areas, covering whole countries or group of countries [110]. Unfortunately, to

maintain massive and global gaming infrastructures, areas can be wide, including

multiple servers that appear with different performances to clients. This work’s in

favor of adopting a migration algorithm, for the motivation above.

Intuitively, the aim of the migration mechanism is to make the latency curve

distribution of the clients as much homogeneous as possible. This means that the

game service is fairly available, because the latency of a client is similar to the latency

of other clients. A timestepped time management like the one defined in previous

section could additionally play in favor of the fairness and latency clustering-effect

of clients, by letting “fast” clients to be synchronized to the rhythm sustainable by

“slow” clients.

6.4.1 The migration heuristics

When a client determines it should try to move to another server, it has to decide

which one is the “best choice” for its new connection. As said before, the link

bandwidth is not a critical factor, and cannot be modified, because the slowest

network segment usually is the one which connects a user to his ISP.3

A good migration heuristic should consider at least two other factors: the network

latency between the client and the server, and the server load. It is assumed that

each client performs periodic pings towards every possible candidate server, to obtain

dynamic estimates of the network latencies. This method is simple, it gives quite

a good approximation of the “real” latency and allows a experimental validation of

assumptions. Moreover, the ping rate allows to control the overheads introduced.

3For instance, a user connecting with a 56Kbps modem is mainly limited by this bandwidth

bottleneck, not by his server’s one.

Chapter 6. A Migration-based Architecture for Internet Games 96

The pitfall of the ping method is that a well connected server could result the

target for many clients connections, and this may saturate the server capacity. In

the proposed architecture, it is introduced a simple load balancing policy based

on service admission principles: a server keeps track of the number of currently

connected clients and refuses to accept a new connection if its load becomes too high

(causing a global performance loss). In future improvements of this architecture,

servers could exchange load indicators, by defining a new dynamic distributed load-

balancing technique.

The migration trigger

A very important point is the algorithm that activates a client migration. This work

is mainly focused on the simplest of all, named simple migration, and in addition,

some tests was made on a more complex algorithm that we called early migration.

Simple migration

The simple migration algorithm is the following: once every a fixed number of

seconds the client sends a ping probe (ICMP ECHO REQUESTs) to the servers

in the list. If a different server appears to be faster than the current one, then a

migration process will be activated. Otherwise, no client migration is performed.

This policy is simple and stable, because the frequency of migrations can be tuned

by paying some reactivity to network dynamics.

Early migration

The early migration evaluates migration opportunities at fixed time intervals, like

previous policy. In addition, clients collects runtime statistics on the network round

trip time by exploiting commands/replies from/to the server. If the runtime statis-

tics indicate that the current connection is becoming too slow, then the client should

try to anticipate the migration attempt. Many possible implementations can be ob-

tained by considering different statistics and thresholds.

Chapter 6. A Migration-based Architecture for Internet Games 97

6.4.2 The migration protocol

The client starts from the first server of the list, and if the migration is considered

useful, it sends a packet to its current server by asking him to migrate to a new

one. Upon migration request, the current server takes care of contacting the new

server. If the new server has sufficient available resources for a new client, the cur-

rent server sends the client data to the new server. When the new client instance is

active on the new server the client is notified and starts sending packets to the new

server. Meanwhile, the old server forwards the received packets to the new server

and routes back the replies. In this way the migration process is transparent to the

client that keeps playing during the migration with no additional delays. If a server

sends a negative reply to a migration request, the client asks for the following server

in its list, until the end of the list is reached, or the migration is completed. The

migration protocol is simple, and can be implemented as a logout/login sequence

with some intermediate steps to move the client status data and the packet forward-

ing during the migration phase. The key assumption is that every server maintains

the information of managed clients only, together with the information of the whole

virtual environment, so that no environment information needs to be migrated. The

migration implementation may be dependent to the game platform. Anyway, our

preliminary considerations over generalized gaming architectures shown that depen-

dencies from the core of a gaming system should not require complex adaptation

efforts.

6.5 Experimental results

6.5.1 Simulation tool

In order to simulate the proposed migration-based architecture, it was not used

any existing simulation tool or runtime, but it was created a dedicated simulator,

opportunely optimized for the RAM management, in order to overcome the memory

bottleneck in a massive simulation [68]. Another reason for this simulator choice was

Chapter 6. A Migration-based Architecture for Internet Games 98

the model simplicity and simulator speed. Existing powerful runtime environments

(e.g. [60]), would have required a complex management and modeling efforts not

motivated by the need for high simulator potential. Given the previously described

assumptions, the simulation model is quite simple, it is highly modular, and does

not require complex simulation services. We want to simulate MMORPG networks

with thousands clients connected at the same time, where each client communicates

with at least one server and each server communicates with every other server. We

implemented, tested and validated a dedicated event-driven simulator written in

C language, with good performances and low memory requirements. The discrete

event-based simulation paradigm was preferred to a time stepped simulation [97, pp.

7–9, 93, 94] mainly because the behavior of thousands simulated objects generating

few events is more efficient to be simulated via discrete event-based simulation.

6.5.2 Simulation setup

The simulation parameters have been discussed in previous sections. Specifically, it

was defined the values of the random distributions parameters and their types, the

percentage of clients and servers of each connection class, the size distribution of

variable kinds of packets [50], the bandwidth and latency characteristics of common

network connection classes, and the CPU time required to manage play requests.

The typical simulated scenario is composed by a network with 20 gaming servers

and 2000 concurrent clients. All the simulated scenarios’ parameters, like the number

of clients and servers, the time each client spends in a connection and the frequency

it sends play requests have been chosen in order to reflect a real scenario. A number

ranging from 10 to 20 independent runs has been executed for each test in order to

achieve a good confidence level [97, pp. 253–259].

6.5.3 Performance results

The main performance index will be referred to as play time, which is defined as the

time a client has to wait for a reply after it has sent a request. The play time is

Chapter 6. A Migration-based Architecture for Internet Games 99

expressed in milliseconds (ms) and it is used to compare the fairness of a gaming

infrastructure under many different scenarios.

The first graph (Figure 6.4) is a comparison between the scenario characterized

by the original MMORPGs architecture and the same architecture with the simple

migration algorithm (see Section 6.4). The figure shows the distribution of clients (Y

axis) with respect to their respective average play time values (on the X axis). The

solid line represents the original architecture, while the dashed line illustrates the

effect of the “simple migration” mechanism over the same scenario. With the original

architecture, the play times appear to be clustered around at least 5 sets of distant

local aggregation values. This demonstrates that clients would fall with a certain

distribution in groups characterized by different play times performances, resulting

in unfair gaming service. The play times appear to be much more concentrated

with the simple migration mechanism. There is a small group in the right part of

the graph that depends on the clients with very slow connections, and another big

group on the left with really good average performances. It is worth noting that, in

the migration-enabled system, a timestep around 220 ms would satisfy in fair way

a majority of clients, with respect to the classical implementation.

In Figure 6.5 is shown the runtime evolution of a fairness index. The concept

of “fairness” in this work may be represented as the variance of the average play

times of the clients in a given time interval (1 s). If the variance value is low, each

player experiences a latency which is similar, on the average, to the others players’.

On the other hand, a big variance value means that the play times are much more

heterogeneous, hence some players suffer the unfairness of the gaming infrastruc-

ture. The original architecture (solid line) leads to higher variance value than the

same architecture with the simple migration. After an initial transient phase, the

migration-enabled architecture outperforms the classic architecture in terms of fair-

ness. In table 6.3, are calculated the confidence intervals for the estimated play time

variance. The narrow interval obtained by the simple migration mechanism confirms

the expectations about the generalized and uniform level of fairness obtained by the

clients of the gaming architecture. Quite surprisingly, the confidence interval for

Chapter 6. A Migration-based Architecture for Internet Games 100

 0

 20

 40

 60

 80

 100

 120

 140 160 180 200 220 240 260 280 300 320

cl
ie

nt
s

mean of play times (ms)

no migration
simple migration

Figure 6.4: Distribution of clients over average play time values: simple migration

vs. no migration

the fairness index obtained with the “early migration” heuristic mechanism is larger

than the same index in the original architecture with no migration. This was due

to the fluctuating behavior of subsets of clients swinging between two servers, by

introducing migration overheads and unbalanced loads on the servers.

The analysis on the average value of the play times shows that the average time

for a reply, i.e. the system interactivity, is favored by the introduction of the simple

migration. This can be explained, as we can see from the Figure 6.4, even if some

clients are subject to penalty (i.e. the first high spike in the distribution on the

left of the solid line is shifted to the right in the dashed one). The penalty for fast

clients is quite limited and was considered as a consequence of the architectural

design, given the initial assumptions. This fact is not critical, because it does not

compromise the interactive potential of fast clients. As a good news, this flattens

the differences of play times between fast and slow clients.

In Figure 6.6 it is shown the average play time of messages sent by all the clients

in the simulated system during a given time interval. It is clear that at runtime the

“simple migration” mechanism gives the better results, with respect to the ‘early

migration” scheme, which in turn outperforms the classical static (no migration)

Chapter 6. A Migration-based Architecture for Internet Games 101

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07 1.4e+07

va
ria

nc
e

time (ms)

no migration
simple migration

Figure 6.5: Dynamic estimated variance of the play time values (ms)

 150

 170

 190

 210

 230

 250

 270

 290

 310

 330

 350

 0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07 1.4e+07

av
er

ag
e

pl
ay

 ti
m

e
(m

s)

time (ms)

no migration
simple migration

early migration

Figure 6.6: Runtime average play time values (ms)

Chapter 6. A Migration-based Architecture for Internet Games 102

No migration Simple migration Early migration

Run replicas 10 10 10

Run samples 80,221 63,013 62,610

Transient samples 12,000 12,000 12,000

Average Play Time (ms) 2,816.69 1,203.03 1,664.48

Estimation of σ2 4,766,163.53 965,389.76 4,809,603.78

Play Time Confidence int. 1,551.23 - 4,082.14 633.51 - 1,772.56 393.27 - 2,935.69

Play Time Conf. Interval width 2530.91 1139.05 2542.42

Table 6.3: Confidence intervals of play time variance (90-th percent confidence

level)

implementation.

Figure 6.7 shows the same index of Figure 6.6, but this time the X axis is given

by the number of moves performed, which is related to the player life duration in

the game. The X axis shows the numbered sequence of requests of each client, and

the Y axis reports the average play time of the ith request by the set of clients that

were involved in the simulation. This performance index needs to introduce some

preliminary considerations. First, this index is correct, since the rate of commands

sent by slow and fast clients is homogeneous and comparable. Second, each client

remains connected for a certain amount of time that has a pre-defined average value

[56]. There are many motivations that justify this choice in the model parameteri-

zation: mainly, slow clients are usually modem connected, hence they pay for time

of connection, and, also, they may experience sudden death of their avatars due to

connection delays. The average number of messages sent by slow clients falls around

the middle of the X range in the figure, while fast clients perform longer playing

activities. The solid line refers to average play times in the architecture with no

migration. With this scenario, the average client has a play time of about 250 ms

at the beginning of the playing interval, and this index appears to decrease when

the slow clients start to abandon the game. After X = 8000 moves in the figure,

Chapter 6. A Migration-based Architecture for Internet Games 103

 160

 180

 200

 220

 240

 260

 280

 300

 320

 0 2000 4000 6000 8000 10000 12000

pl
ay

 ti
m

e
(m

s)

move number

no migration
simple migration

Figure 6.7: Average of play time values move by move

the survived players in the game are mostly fast clients. This is shown in the figure

because average play time starts to decrease.

The dashed line shows the average client play times in the “simple migration”

scenario. The average play time drops to a low play time after the first migration

assessment occurs. The fact that the dashed line converges to a constant value

(instead of decreasing like with the solid line) means that every client experiences

a comparable play time, which is maintained also when slow clients (e.g. modem

enabled) start to leave the game, and this confirms the improvement in fairness.

The fact that the average play time with “no migration” outperforms the play

time with “simple migration” after X = 8000 moves can be explained because in

the “no migration” scenario most of the slow clients already left the system and the

reduced number of clients increases the servers and network performances.

The “early migration” heuristic has been evaluated with the same tests per-

formed for the “simple migration” and no migration mechanisms. The results shown

that the “early migration” scheme have a worst behavior than the simple migration.

A comparison between the two types of migration algorithms is shown in Figures

6.8 and 6.9. The dashed line is for the simple migration, the dotted one is for the

early migration. The analysis of simulation traces shown that the early migration

Chapter 6. A Migration-based Architecture for Internet Games 104

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07 1.4e+07

va
ria

nc
e

time (ms)

simple migration
early migration

Figure 6.8: Dynamic estimated variance of the play time values (ms), simple vs

early migration

scheme has some difficulties when there are two or more servers with a very similar

latency. This makes a subset of clients to swing between two servers, by introducing

migration overhead and unbalanced loads on the servers.

6.6 Conclusion and future work

In this chapter has been presented an improved architecture model for online mul-

tiplayer games, focused on MMORPGs with multiple replicated servers. The pro-

posed mechanism has been simulated over the class of distributed multiplayer and

multi-server interactive games, implemented over a general communication network

infrastructure. Results show a significant fairness improvement, more homogeneous

performances, and the absence of significant overheads, with less or no modifications

required to the gaming architecture.

Additional studies will be performed to extend the client migration mechanism:

more efficient migration algorithms, new heuristics tuned on new runtime statistics,

and the refinement of communication protocols between servers. The creation and

design of gaming architectures with “database server” for the storage of player in-

Chapter 6. A Migration-based Architecture for Internet Games 105

 0

 20

 40

 60

 80

 100

 120

 140 160 180 200 220 240 260 280 300 320

cl
ie

nt
s

mean of play times (ms)

simple migration
early migration

Figure 6.9: Distribution of clients over average play time values, simple vs early

migration

formation, and “area servers” for the elaboration of events in different areas of the

simulated world [36] will be evaluated. The gaming architecture will be integrated

by a pool of “proxies” accepting connections from the clients and forwarding their

requests to the right area server [103, 82]. Another research effort will also investi-

gate the possible decoupling and integration of the client migration and the remote

and replicated server execution.

As future work we plan to extend the ARTÌS middleware with online gaming

capabilities. As stated in the introduction of this chapter we plan to share knowledge

between distributed simulation and Internet gaming research fields. Integrating the

gaming capabilities in ARTÌS will require a better support for fault tolerance and

dynamic client behavior, the implementation of new synchronization algorithms and

fulfillment of gaming-related requirements.

Chapter 7

Conclusions

In this thesis has been presented a new middleware for parallel and distributed sim-

ulation named Advanced RTI System (ARTÌS) (Chapter 3). In our previously pub-

lished works [48, 49] it has been demonstrated that many available implementations

of the IEEE 1516 standard are unfitted to simulate massively populated dynamic

systems. Starting from this analysis, and considering the miss of an efficient Open

Source [22] RTI, the ARTÌS middleware has been designed and implemented with

special attention to performance issues. The communication and synchronization

middleware is adaptive and user-transparent about a large set of optimizations re-

quired to improve performances. It is able to detect the best fitted communication

mechanism available to take advantage of low latency and reliable communications.

The ARTÌS middleware is able of adaptively select the best available interaction

module with respect the dynamic allocation of Logical Processes (LPs). The run-

time validation of our middleware has been done thanks to the simulation of a set

of typical wireless networks (ad hoc and sensor). This simulation effort has involved

the analysis of different Media Access Control (MAC) protocols and has included

speed-up and scalability evaluation. The ARTÌS middleware has been useful in

the development of a new energy aware MAC protocol for static sensor networks

(Chapter 4).

The previously described approach has proved to be able to increase the sim-

ulation efficiency, but in presence of massively populated dynamic scenarios the

Chapter 7. Conclusions 107

overhall communication overhead could still nullify the speed-up improvements ob-

tained by load sharing. Our approach in this case is based on “migration”, dynami-

cally adapting the “simulated entities” allocation over the set of Physical Execution

Units (PEUs) involved in the simulation it is possible to drastically reduce the com-

munication overhead. The gain is obtained clustering the “local communications”

inside the PEU, without involving costly network communications. This approach

is supported in ARTÌS thanks to the integration of the GAIA framework (Chapter

4).

In order to further increase the parallel and distributed simulation speed-up and

consequently reduce the overhall time required to complete the simulation runs, we

have investigated the “concurrent replication“ of parallel and distributed simulation

(CR-PADS) (Chapter 5). Executing a set of concurrent simulation runs can bring to

better CPU and network -utilization with respect of a “legacy” sequential approach.

Finally, inspired by the parallel and distributed simulation techniques we have

designed and simulated a new migration-enabled middleware to support massively

populated Internet Games (Chapter 6). In this case the migration is applied to the

client-server matching, thanks to this approach the new gaming middleware would

be able to reduce communication latency and to significantly improve the game

fairness.

In the “conclusions and future work” of each chapter are indicated our planned

research directions for the described sub-topics. Generally speaking, the ARTÌS mid-

dleware is still far from completeness, a lot of new features are planned or waiting to

be integrated. We plan to merge together our “migration based” and “concurrent

replication” approaches to obtain an user-transparent middleware characterized by

good performance and scalability. Other efforts will be about the tuning and devel-

opment of better heuristics for both migration and load balancing. In my opinion

the developed architecture could be really useful also to address fault-tolerance re-

quiremens and to support the simulation cloning. Until now our synchronization

approach has been based on pessimistic algorithms, it could be interesting to evalu-

ate our migration and concurrent replication infrastructure in presence of optimistic

Chapter 7. Conclusions 108

synchronization (i.e. Time Warp). A significant amount of work has been done in

the Data Distribution Management (DDM) field and still waits to be accorded to

our approach and integrated in our middleware.

Chapter 8

Acknowledgements

It is time to thank people (and not only people) who influenced, in a way or in

another, the writing of this thesis and who had an impact on these years of work

and research. Thanks to Prof. Azzedine Boukerche who referred this thesis in a very

short timeframe and providing really useful remarks. My decision is to write the

following of the acknowledgements in Italian. I’m sorry for the readers that cannot

understand it, but Italian is my first language, writing in English I would be unable

to express all the needed shades of meaning.

Tra le molte persone da ringrazie le prime sono Daniela e Gianni, erano con me

quando io ero molto lontano. Un grazie a Lorenzo Donatiello, il mio tutor. Mi

ha introdotto nell’affascinante mondo della simulazione, mi ha dato la possibilità di

scoprire il serio gioco della ricerca, mi ha permesso di viaggiare e conoscere. Luciano

Bononi mi ha insegnato e spiegato innumerevoli cose, ma spesso ha anche sopportato

il mio pessimo carattere.

Senza Michele Bracuto molto di quello che ho cercato di raccontare nelle pagine di

questa tesi semplicemente non sarebbe stato possibile. Nuovamente grazie all’amica

Penelope, sapere che c’è è sempre un sollievo. Roberto ha spesso avuto voglia di

ascoltare i miei deliri.

Un grazie anche a molti dei miei colleghi dell’Underground: senza di voi le mie

giornate sarebbero state terribilmente noiose e tristi. Quindi grazie ad Andrea,

Giorgia, Laura, Valentina, Rocco... no, non ho dimenticato Vas, per lui il grazie è

Chapter 8. Acknowledgements 110

ancora più grande semplicemente perchè è “fantastico”.

In qualche modo devo ricordare anche l’“annus terribilis” 2003, se proprio era

necessario mi ha cambiato. Un ringraziamento particolare è dovuto anche a M. per

la sua “lectio magistralis” di squallore.

Per chiudere degnamente questo sproloquio voglio riportare una frase di Richard

W. Hamming: “There are wavelengths that people cannot see, there are sounds that

people cannot hear, and maybe computers have thoughts that people cannot think”

e quindi grazie anche a: gaia, alice, iaia, sofia, ines, griet, luna, caronte, cerbero,

chimera, cassandra, caos, zuma e anche un po’ dotto.

References

[1] Cineca scientific computing. http://www.cineca.it/HPSystems/

ScientificComputing/index.htm.

[2] Dartmouth SSF (DaSSF). http://www.cs.dartmouth.edu/research/

DaSSF/.

[3] Defence Modeling and Simulation Office (DMSO). https://www.dmso.mil/

public/transition/hla/.

[4] DMSO: Software Distribution Center. https://sdc.dmso.mil.

[5] Extensible RTI. http://www.npsnet.org/~npsnet/xrti/.

[6] FDK- Federated Simulations Development Kit. http://www.cc.gatech.edu/

computing/pads/fdk/.

[7] Gamesnet. http://www.gamesnet.it.

[8] GARR - The Italian Academic and Research Network. http://www.garr.

it/garr-b-home-engl.shtml.

[9] GTW/TeD/PNNI. http://www.cc.gatech.edu/computing/pads/teddoc.

html.

[10] IEEE Std 1516-2000: IEEE standard for modeling and simulation (M&S)

high level architecture (HLA) - framework and rules, - federate interface spec-

ification, - object model template (OMT) specification, - IEEE recommended

References 112

practice for high level architecture (HLA) federation development and execu-

tion process (FEDEP).

[11] Internet engineering task force, MANET WG charter.

[12] iSSF Home Page. http://www.crhc.uiuc.edu/~jasonliu/projects/issf/.

[13] JiST / SWANS. http://jist.ece.cornell.edu/.

[14] Magnetar Games Corporation - Chronos. http://www.magnetargames.com/

Products/Chronos/.

[15] Maisie Programming Language. http://may.cs.ucla.edu/projects/

maisie/.

[16] MÄK Technologies. http://www.mak.com.

[17] MÄK Technologies. http://www.mak.com/s1ss0p0.php.

[18] Microsoft DirectPlay. http://msdn.microsoft.com/archive/default.asp?

url=/archive/en-us/direct%x9_c/directx/play/dplay.asp.

[19] Midian server for ultima online. http://midian.gamesnet.it.

[20] Nexus ultima online server. http://www.nexus.sm.

[21] Ngi. http://www.ngi.it.

[22] Open Source Initiative (OSI). http://www.opensource.org/.

[23] OpenSkies - Cybernet. http://www.openskies.net/features/features.

html.

[24] OPNET Modeler and Wireless Module. http://www.opnet.com/products/

modeler/.

[25] Parallel / Distributed ns. http://www.cc.gatech.edu/computing/compass/

pdns/.

References 113

[26] Pitch AB. http://www.pitch.se.

[27] SNT: QualNet. http://www.qualnet.com.

[28] Tgmonline. http://www.tgmonline.it/fragzone/server.

[29] Virtual Technology Corporation. http://www.virtc.com.

[30] PERF project: Performance Evaluation of Complex Systems: Techniques,

Methodologies and Tools, Italian MIUR-FIRB, http://www.perf.it, 2002.

[31] Georgia Tech RTI-kit, http://www.cc.gatech.edu/computing/pads/, 2003.

[32] OMNeT++: discrete event simulation environment, 2004.

[33] Open SystemC Initiative, http://www.systemc.org, 2004.

[34] UCB/LNBL/VINT: the ns-2 network simulator,

http://www.isi.edu/nsman/ns/, 2004.

[35] PADS: Parallel and Distributed Simulation group, Department of Computer

Science, University of Bologna, Italy. http://pads.cs.unibo.it, 2005.

[36] J. Aronson. Using groupings for networked gaming. http://www.gamasutra.

com/features/20000621/aronson_pfv.htm.

[37] M. Azzolini, M. Bracuto, A. Cremonini, G. D’Angelo, and C. Marchetti. A new

ecological approach for information technology. In Nightmare Group Internal

Memorandum.

[38] R.L. Bagrodia and W.T. Liao. Maisie: A language for the design of effi-

cient discrete-event simulations. IEEE Transactions on Software Emgineering,

20(4):225–238, 1994.

[39] R.L. Bagrodia and R. Meyer. PARSEC: A parallel simulation environment for

complex system. IEEE Computer, 31(10):77–85, 1998.

References 114

[40] R.A. Bangun and E. Dutkiewicz. An analysis of multi-player network games

traffic. In 3rd IEEE Workshop on Multimedia Signal Processing, pages 3–8,

1999.

[41] J. Bentini. Architettura distribuita scalabile per applicazioni interattive e

multiutente su Internet. Master’s thesis, Università di Bologna, 2003.

[42] A. Berrached, M. Beheshti, O. Sirisaengtaksin, and A. Korvin. Alternative

approaches to multicast group allocation in HLA data distribution. In Pro-

ceedings of the 1998 Spring Simulation, Jan 2002.

[43] Bioware Corp. Neverwinter night. http://nwn.bioware.com.

[44] Blizzard Entertainment. Warcraft 3. http://www.blizzard.com/war3.

[45] L. Bononi, M. Bracuto, G. D’Angelo, and L. Donatiello. ARTÌS: a parallel and

distributed simulation middleware for performance evaluation. In Proceedings

of the 19-th International Symposium on Computer and Information Sciences

(ISCIS 2004), 2004.

[46] L. Bononi, M. Bracuto, G. D’Angelo, and L. Donatiello. A new adaptive

middleware for parallel and distributed simulation of dynamically interacting

systems. In DS-RT ’04: Proceedings of the 8-th IEEE International Symposium

on Distributed Simulation and Real Time Applications, 2004.

[47] L. Bononi, M. Bracuto, G. D’Angelo, and L. Donatiello. Performance analysis

of a parallel and distributed simulation framework for large scale wireless sys-

tems. In MSWiM ’04: Proceedings of the 7th ACM international symposium

on Modeling, analysis and simulation of wireless and mobile systems, pages

52–61. ACM Press, 2004.

[48] L. Bononi and G. D’Angelo. A novel approach for distributed simulation

of wireless mobile systems. In Proceedings of IFIP-TC6 8-th International

Conference on Personal Wireless Communications (PWC’03), 2003.

References 115

[49] L. Bononi, G. D’Angelo, and L. Donatiello. HLA-based Adaptive Distributed

Simulation of Wireless Mobile Systems. In Proceedings of the seventeenth work-

shop on Parallel and distributed simulation. IEEE Computer Society, 2003.

[50] M. Borella. Source models of network game traffic. Computer Communica-

tions, 23(4):403–410, 2000.

[51] M. Borella, D. Swider, S. Uludag, and G. Brewster. Internet packet loss:

Measurement and implications for end-to-end QoS. In Proc. of the Intl. Conf.

on Parallel Processing Workshops, 1998.

[52] A. Boukerche and S.K. Das. Dynamic load balancing strategies for conserva-

tive parallel simulation. In Proc. of 11-th Workshop on Parallel and Distributed

Simulation (PADS’97), pages 20–28, June 1997.

[53] A. Boukerche, S.K. Das, and A. Fabbri. SWiMNet: a scalable parallel simu-

lation testbed for wireless and mobile networks. Wirel. Netw., 7(5):467–486,

2001.

[54] A. Boukerche and A. Fabbri. Partitioning parallel simulation of wireless net-

works. In Proceedings of the 32nd conference on Winter simulation, pages

1449–1457. Society for Computer Simulation International, 2000.

[55] A. Boukerche and A. Roy. Dynamic grid-based approach to data distribution

management. J. Parallel Distrib. Comput., 62(3):366–392, 2002.

[56] F. Chang and W. Feng. Modeling player session times of on-line games. In

Proc. of the 2nd workshop on Network and system support for games, pages

23–26. ACM Press, 2003.

[57] D. Chen, S.J. Turner, B.P. Gan, et al. Alternative solutions for distributed

simulation cloning. Simulation, 79(5–6):299–315, 2003.

[58] G. Combs et al. Ethereal: A network protocol analyzer. http://www.

ethereal.com.

References 116

[59] E. Cronin, B. Filstrup, and A. Kurc. A distributed multiplayer game server

system. http://citeseer.nj.nec.com/cronin01distributed.html.

[60] J.S. Dahmann, R. Fujimoto, and R.M. Weatherly. The Department of Defense

High Level Architecture. In Winter Simulation Conference, pages 142–149,

1997.

[61] J.S. Dahmann, R. Fujimoto, and R.M. Weatherly. The DoD High Level Archi-

tecture: an update. In Winter Simulation Conference, pages 797–804, 1998.

[62] S.R. Das. Adaptive protocols for parallel discrete event simulation. In WSC

’96: Proceedings of the 28th conference on Winter simulation, pages 186–193.

ACM Press, 1996.

[63] W.J. Davis and G.L. Moeller. The high level architecture: is there a better

way? In Winter Simulation Conference, pages 1595–1601, 1999.

[64] E. de Souza Mota, K. Pawlikowski, and A. Wolisz. A perspective of batching

methods in simulation environment of mulitple replications in parallel. In

Proc. Winter Simulation Conference WSC’2000, pages 761–766. IEEE Press,

2000.

[65] E. Deelman and B.K. Szymanski. Dynamic load balancing in parallel discrete

event simulation for spatially explicit problems. In Proceedings of the twelfth

workshop on Parallel and distributed simulation, pages 46–53. IEEE Computer

Society, 1998.

[66] T.J. Delve and N.J. Smith. Use of dassf in a scalable multiprocessor wireless

simulation architecture. In WSC ’01: Proceedings of the 33nd conference on

Winter simulation, pages 1321–1329. IEEE Computer Society, 2001.

[67] K. El-Khatib and C. Tropper. On metrics for the dynamic load balancing

of optimistic simulations. In HICSS ’99: Proceedings of the Thirty-second

Annual Hawaii International Conference on System Sciences-Volume 8, page

8051. IEEE Computer Society, 1999.

References 117

[68] H. Engum, J.V. Iversen, and O. Rein. Zereal: A semi-realistic simulator of

massively multiplayer online games. http://citeseer.nj.nec.com/555870.

html.

[69] Epic Games, Inc. Unreal Tournament. http://www.unrealtournament.com,

2004.

[70] G. Ewing, K. Pawlikowski, and D. McNickle. Akaroa2: Exploiting network

computing by distributing stochastic simulation, 1999.

[71] M. Ewing. The economic effects of reusability on distributed simulations. In

WSC ’01: Proceedings of the 33nd conference on Winter simulation, pages

812–817. IEEE Computer Society, 2001.

[72] J. Farber. Network game traffic modelling. In Proc. of the 1st workshop on

Network and system support for games, pages 53–57, New York, NY, USA,

2002. ACM Press.

[73] W Feng, F. Chang, W. Feng, and J. Walpole. Provisioning on-line games: a

traffic analysis of a busy counter-strike server. In Proc. of the second ACM

SIGCOMM Workshop on Internet measurment, pages 151–156. ACM Press,

2002.

[74] W. Feng and W. Feng. On the geographic distribution of on-line game servers

and players. In Proc. of the 2nd workshop on Network and system support for

games, pages 173–179. ACM Press, 2003.

[75] A. Ferscha. Parallel and Distributed Simulation of Discrete Event Systems,

Handbook of Parallel and Distributed Computing. McGraw-Hill, 1995.

[76] F.H.P. Fitzek, E. Mota, et al. An efficient approach for speeding up simulation

of wireless networks. In WMSC’2000. Proceedings. of the Western Multicon-

ference. on Computer Simulation, 2000.

References 118

[77] S. Ford and V. Paxson. Difficulties in simulating the internet. IEEE/ACM

Transactions on Networking (TON) archive, 9(4):392–403, August 2001.

[78] R.M. Fujimoto. Parallel and Distributed Simulation Systems. John Wiley &

Sons, Inc., first edition, 2000.

[79] B.P. Gan, Y.H Low, S. Jain, et al. Load balancing for conservative simulation

on shared memory multiprocessor systems. In Proceedings of PADS 2000,

pages 139–146. IEEE Computer Society, 2000.

[80] L. Gautier and C. Diot. Design and evaluation of MiMaze, a multi-player

game on the Internet. In Intl. Conf. on Multimedia Computing and Systems,

pages 233–236, 1998.

[81] Gravity Corporation. Ragnarok online. http://iro.ragnarokonline.com.

[82] C. Griwodz. State replication for multiplayer games. In Proc. of the 1st

workshop on Network and system support for games, pages 29–35. ACM Press,

2002.

[83] T. Henderson. Latency and user behaviour on a multiplayer games server. In

Proc. of the 3rd Intl. Workshop on Networked Group Communication (NGC),

pages 1–13, November 2001.

[84] P. Huang, D. Estrin, and J. Heidemann. Enabling large-scale simulation: Se-

lective abstraction approach to the study of multicast protocol. In Proceedings

of the 6th International Symposium on Modeling, Analysis and Simulation of

Computer and Telecommunication Systems, page 241. IEEE Computer Soci-

ety, 1998.

[85] M. Hybinette and R.M. Fujimoto. Cloning: a novel method for interactive

parallel simulation. In WSC ’97: Proceedings of the 29th conference on Winter

simulation, pages 444–451. ACM Press, 1997.

References 119

[86] M. Hybinette and R.M. Fujimoto. Cloning: a novel method for interactive par-

allel simulation. In Proceedings of the 29th Conference on Winter Simulation,

pages 444–451. ACM Press, 1997.

[87] M. Hybinette and R.M. Fujimoto. Dynamic virtual logical processes. In PADS

’98: Proceedings of the twelfth workshop on Parallel and distributed simulation,

pages 100–107. IEEE Computer Society, 1998.

[88] M. Hybinette and R.M. Fujimoto. Cloning parallel simulations. ACM Trans.

Model. Comput. Simul., 11(4):378–407, 2001.

[89] M. Hybinette and R.M. Fujimoto. Scalability of parallel simulation cloning.

In SS ’02: Proceedings of the 35th Annual Simulation Symposium, page 275.

IEEE Computer Society, 2002.

[90] V. Jacobson, C. Leres, S. McCanne, et al. Tcpdump. http://www.tcpdump.

org.

[91] D.R. Jefferson. Virtual time. ACM Trans. Program. Lang. Syst., 7(3):404–425,

1985.

[92] K.G. Jones and S.R. Das. Parallel execution of a sequential network simulator.

In Proceedings of the 32nd conference on Winter simulation, pages 418–424.

Society for Computer Simulation International, 2000.

[93] O.E. Kelly, J. Lai, N.B. Mandayam, et al. Scalable parallel simulations of

wireless networks with WiPPET: modeling of radio propagation, mobility and

protocols. Mob. Netw. Appl., 5(3):199–208, 2000.

[94] F. Kuhl, R. Weatherly, and J. Dahmann. Creating computer simulation sys-

tems: An Introduction to the High Level Architecture. Prentice Hall, 1999.

[95] L. Lamport. Time, clocks, and the ordering of events in a distributed system.

Communications of the ACM, 21(7), 1978.

References 120

[96] T. Lang, G. Armitage, P. Branch, and H. Choo. A synthetic traffic model for

Half-Life. In Australian Telecommunications Networks & Applications Con-

ference 2003, Melbourne, Australia, December 2003.

[97] A. Law and W. Kelton. Simulation Modeling and Analysis. McGraw Hill

International Series, third edition, 2000.

[98] Y. Lin. Parallel independent replicated simulation on a network of work-

stations. In PADS ’94: Proceedings of the eighth workshop on Parallel and

distributed simulation, pages 73–80. ACM Press, 1994.

[99] Y. Lin, K. Guo, and S. Paul. Sync-MS: Synchronized messaging service for

real-time multi-player distributed games. In Proeedings of 10th IEEE Intl.

Conf. on Network Protocols (ICNP), 2002.

[100] W.W. Liu, C. Chiang, H. Wu, et al. Parallel simulation environment for mobile

wireless networks. In Proceedings of the 28th conference on Winter simulation,

pages 605–612. ACM Press, 1996.

[101] J. Luthi and S. Grosmann. The resource sharing system: dynamic federate

mapping for HLA-based distributed simulation. In PADS ’01: Proceedings

of the fifteenth workshop on Parallel and distributed simulation, pages 91–98.

IEEE Computer Society, 2001.

[102] MathWorld. Continuous Statistical Distributions. http://mathworld.

wolfram.com/topics/ContinuousDistributions.html.

[103] M. Mauve, S. Fischer, and J. Widmer. A generic proxy system for networked

computer games. In Proc. of the 1st workshop on Network and system support

for games, pages 25–28. ACM Press, 2002.

[104] J.C. McEachen. Traffic characteristics of an Internet–based multiplayer online

game. In 4th Intl. Conf. on Information, Communications & Signal Processing,

2003.

References 121

[105] Milan Internet eXchange. Charter members. http://www.mix-it.net/

elenco_afferenti.html?lang=it&order=banda.

[106] M. Myjak, S. Sharp, et al. Implementing object transfer in HLA. In SIW ’99:

Proceedings of the 5-th Simulazion Interoperability Workshop, 1999.

[107] V. Naoumov and T. Gross. Simulation of large ad hoc networks. In Proceed-

ings of the 6th international workshop on Modeling analysis and simulation of

wireless and mobile systems, pages 50–57. ACM Press, 2003.

[108] D.M. Nicol and R.M. Fujimoto. Parallel simulation today. Annals of Opera-

tions Research, (53):249–285, 1994.

[109] M. Oliveira and T. Henderson. What online gamers really think of the Inter-

net? In Proc. of the 2nd workshop on Network and system support for games,

pages 185–193, New York, NY, USA, 2003. ACM Press.

[110] Origin. Ultima online. http://www.ultimaonline.com.

[111] J. Panchal, O. Kelly, J. Lai, et al. Parallel simulations of wireless networks with

TED: radio propagation, mobility and protocols. SIGMETRICS Perform.

Eval. Rev., 25(4):30–39, 1998.

[112] L. Peterson and B. Davie. Computer Network — A Systems Approach. Morgan

Kaufmann, second edition, 2000.

[113] D.M. Rao and P.A. Wilsey. An object-oriented framework for parallel sim-

ulation of ultra-large communication networks. In Proceedings of the Third

International Symposium on Computing in Object-Oriented Parallel Environ-

ments, pages 37–48. Springer-Verlag, 1999.

[114] D.M. Rao and P.A. Wilsey. Parallel co-simulation of conventional and active

networks. In MASCOTS, pages 291–298, 2000.

[115] D.M. Rao and P.A. Wilsey. Parallel co-simulation of conventional and active

networks. In Proceedings of the 8th International Symposium on Modeling,

References 122

Analysis and Simulation of Computer and Telecommunication Systems, page

291. IEEE Computer Society, 2000.

[116] D.M. Rao and P.A. Wilsey. An ultra-large scale simulation framework. Journal

of Parallel and Distributed Computing, 10(1):18 – 38, 2000.

[117] G.F. Riley and M. Ammar. Simulating large networks: How big is big enough?

In Proceedings of First International Conference on Grand Challenges for

Modeling and Simulation, Jan 2002.

[118] G.F. Riley, R.M. Fujimoto, and M.H. Ammar. A generic framework for par-

allelization of network simulations. In Proc. of 7th Int. Symp. on Modeling,

Analysis and Simulation of Computer and Telecomm. Systems, 1999.

[119] T. Schulze, S. Strassburger, and U. Klein. HLA-federate reproduction proce-

dures in public transportation federations. In Proceedings of the 2000 Summer

Computer Simulation Conference, 2000.

[120] J. Short, R.L. Bagrodia, and L. Kleinrock. Mobile wireless network system

simulation. Wirel. Netw., 1(4):451–467, 1995.

[121] S.K. Singhal and D.R. Cheriton. Using a position history-based protocol for

distributed object visualization. Technical Report CS-TR-94-1505, 1994.

[122] J. Smed, T. Kaukoranta, and H. Hakonen. Aspects of networking in multi-

player computer games. In W.H. Man L.W. Sing and W. Wai, editors, Proc.

of Intl. Conf. on Application and Development of Computer Games in the 21st

Century, pages 74–81, Hong Kong SAR, China, Nov 2001.

[123] T. Smed, J. Kaukoranta and H. Hakonen. A review on networking and mul-

tiplayer computer games. Technical Report 454, Turku Centre for Computer

Science, April 2002.

[124] T.K. Som and R.G. Sargent. Model structure and load balancing in optimistic

parallel discrete event simulation. In Proceedings of the fourteenth workshop on

References 123

Parallel and distributed simulation, pages 147–154. IEEE Computer Society,

2000.

[125] K. Tang, M. Correa, and M. Gerla. Effects of Ad Hoc MAC layer medium

access mechanisms under TCP. MONET, 6(4):317–329, 2001.

[126] P. Unold, C.L. Gregersen, A.O. Kjeldbjerg, et al. Freeciv. http://www.

freeciv.org.

[127] Valve Corporation. Counter–Strike. http://www.counter-strike.net.

[128] V. Vee and W. Hsu. Locality-preserving load-balancing mechanisms for syn-

chronous simulations on shared-memory multiprocessors. In Proceedings of

the fourteenth workshop on Parallel and distributed simulation, pages 131–

138, 2000.

[129] Wizards of the Coast, Inc. Dungeons & Dragons. http://www.wizards.com/

dnd.

[130] X. Zeng, R.L. Bagrodia, and M. Gerla. GloMoSim: A library for parallel

simulation of large-scale wireless networks. In proc. PADS’98, 1998.

Index

adaptive runtime management, 29

Advanced RTI System, 19

ARTÌS, 19

Application Programming Interfaces

(APIs), 28

Data Distribution Management (DDM),

28

Declaration Management Module,

28

Federation Management Module, 28

Inter Process Communication (IPC),

27

Logging Module, 29

logical architecture, 27

Migration Module, 29

Object Management Module, 28

Performance Module, 29

Time Management Module, 28

Unibo APIs, 29

Chandy-Misra-Bryant (CMB), 9

Concurrent Replication (CR), 63

Generic Adaptive Interaction Architec-

ture (GAIA), 34

Georgia Tech RTI-kit, 25

Global Virtual Time (GVT), 11

Group Mobility Model, 41

heuristic migration policy, 34

High Level Architecture (HLA), 25

IEEE 1516, 25

Internet Gaming, 29

Local Communication Ratio (LCR), 47

lookahead, 10

Massive Multiplayer Online Role-Playing

Games (MMORPGs), 84

Medium Access Control (MAC), 45

middleware, 19

Multiple Replications in Parallel (MRIP),

57

NULL message, 10

Physical Execution Unit (PEU), 37

Random Mobility Motion model (RMM),

41

Random Numbers Generators (RNGs),

66

raw sockets, 28

real-time introspection, 29

124

INDEX 125

reliable-UDP (R-UDP), 28

Simulated Mobile Host (SMH), 41

simulation cloning, 61

time management

conservative, 26

optimistic, 26

Time Warp, 26

time-locality, 39

