
Gabriele D’Angelo
<gda@cs.unibo.it>

http://www.cs.unibo.it/gdangelo/

joint work with:
Stefano Ferretti and Moreno Marzolla

Desenzano, Italy

DIstributed SImulation & Online gaming (DISIO), 2012

Time Warp on the Go

http://disio.cs.unibo.it/

2DIstributed SImulation and Online gaming (DISIO), 2012 Gabriele D'Angelo

Presentation outline

 A little background on simulation

 Parallel And Distributed Simulation (PADS)

 Synchronization: the Time Warp mechanism

 The Go programming language

 The Go-Warp simulator

 Performance evaluation: the PHOLD benchmark

 Conclusions

3DIstributed SImulation and Online gaming (DISIO), 2012 Gabriele D'Angelo

Starting from scratch: simulation

 “A computer simulation is a computation that models

the behavior of some real or imagined system over time”

(R.M. Fujimoto)

 Motivations:

 performance evaluation

 study of new solutions

 creation of virtual worlds such as online games and digital

virtual environments

 …

4DIstributed SImulation and Online gaming (DISIO), 2012 Gabriele D'Angelo

Discrete Event Simulation (DES)

 The state of the simulated system is represented through a

set of variables

 The key concept is the “event”

 An event is a change in the system state and it occurs at

an instant in time

 The evolution is given by a chronological sequence of

events

 All is done through the creation, delivery and computation

of events

5DIstributed SImulation and Online gaming (DISIO), 2012 Gabriele D'Angelo

DES on a single CPU: sequential simulation

 All such tasks are accomplished by a single execution unit

(that is a CPU and some RAM)

 PROS: it is a very simple approach

 CONS: there are a few significant limitations

 the time required to complete the simulation run

 if the model is complex the RAM could be not enough

 This approach does not scale!

6DIstributed SImulation and Online gaming (DISIO), 2012 Gabriele D'Angelo

Going Parallel: PDES

Parallel Discrete Event Simulation (PDES)

 Multiple interconnected execution units (CPUs or hosts)

 Each unit manages a part of the simulation model

 Each execution unit has to manage a local event list

 Locally generated events may have to be delivered to

remote execution units

 All of this needs to be carefully synchronized

 “Concurrent events” can be executed in parallel, this can

lead to a significant speedup of the execution

7DIstributed SImulation and Online gaming (DISIO), 2012 Gabriele D'Angelo

Parallel And Distributed Simulation (PADS)

 “Any simulation in which more than one processor is
employed” (K.S. Perumalla)

 This is a very simple and general definition, there are many
different “flavors” of PADS

 A lot of good reasons for going PADS:

 scalability

 performance (obtaining the results faster)

 to model larger and more complex scenarios

 interoperability, to integrate commercial off-the-shelf simulators

 composability of different simulation models

 to integrate simulators that are geographically distributed

 Intellectual Property (IP) protection

 ...

8DIstributed SImulation and Online gaming (DISIO), 2012 Gabriele D'Angelo

Parallel And Distributed Simulation (PADS)

 There is no global state: this is the key aspect of PADS

 A PADS is the interconnection of a set of model

components, usually called Logical Processes (LPs)

 Each LP is responsible to manage the evolution of only a part

of the simulation

 Each LP has to interact with other LPs for synchronization

and data distribution

 In practice, each LP is usually executed by a processor (or a

core in modern multi-core architectures)

9DIstributed SImulation and Online gaming (DISIO), 2012 Gabriele D'Angelo

Synchronization: on the correct order of events

 Some kind of network interconnects the LPs running the

simulation

 Each LP is executed by a different CPU (or core), possibly at

a different speed

 The network can introduce delays

 The results of a PADS are correct only if its outcome is

identical to the one obtained from the corresponding

sequential simulation

 Synchronization mechanisms are used to coordinate the

LPs: different approaches are possible

10DIstributed SImulation and Online gaming (DISIO), 2012 Gabriele D'Angelo

In-depth: synchronization, causal ordering

 All generated events have to be timestamped and delivered
following a message-passing approach

 Two events are in causal order if one of them can have
some consequences on the other

 The execution of events in non causal order leads to
causality errors

 In a sequential simulation it is easy avoid causality errors
given that there is a single ordered pending event list

 But in a PADS this is much harder!

 In this case the goal is to:

 execute events in parallel, as much as possible

 do not introduce causality errors

11DIstributed SImulation and Online gaming (DISIO), 2012 Gabriele D'Angelo

In-depth: synchronization, approaches

 The most studied aspect in PADS because of its importance

 Many different approaches and variants have been proposed,

with some simplification three main methods:

 time-stepped: the simulated time is divided in

fixed-size timesteps

 conservative: causality errors are prevented,

the simulator is built to avoid them

 optimistic: the causality constraint can be violated and

errors introduced. In case of causality

violations the simulator will fix them

12DIstributed SImulation and Online gaming (DISIO), 2012 Gabriele D'Angelo

In-depth: synchronization, optimistic

 The LPs are free to violate the causality constraint

 They can process events in receiving order (vs. timestamp

order)

 There is no a priori attempt to avoid causality violations

 In case of violation this will be detected and appropriate

mechanisms will be used to go back to a prior state

 The main mechanism is the roll back of internal state

variables of the LP in which happened the violation

 If the error propagated to other LPs, then also the roll back

has to be propagated to all the affected LPs

13DIstributed SImulation and Online gaming (DISIO), 2012 Gabriele D'Angelo

In-depth: synchronization, Time-warp

 The Jefferson's Time Warp mechanisms implements optimistic

synchronization

 Each LP processes all events that it has received up to now

 An event is “late” if it has a timestamp that is smaller than the

current clock value of the LP (that is the timestamp of the last

processed event)

 The violation of local causality is fixed with the roll-back of

all the internal state variables of the simulated model

 The violation has likely propagated to other LPs

 The goal of “anti-messages” is to annihilate the

corresponding unprocessed events in LPs pending event list or

to cause a cascade of roll-backs up to a globally correct

state

14DIstributed SImulation and Online gaming (DISIO), 2012 Gabriele D'Angelo

 Multi and many cores processors

 General purpose CPUs: Intel 10-core Xeon processors,

UltraSPARC T3 (16 cores), AMD FX-series (up to 8 cores)

 Embedded market: Tile-GX (100 cores) and many others

What is next? What is wrong?

 In the (near) future: Intel Many

Integrated Core (MIC) architecture

#cores -> 32... 64...

 As many LPs as cores?

15DIstributed SImulation and Online gaming (DISIO), 2012 Gabriele D'Angelo

 Multi and many cores processors

 General purpose CPUs: Intel 10-core Xeon processors,

UltraSPARC T3 (16 cores), AMD FX-series (up to 8 cores)

 Embedded market: Tile-GX (100 cores) and many others

What is next? What is wrong?

 In the (near) future: Intel Many

Integrated Core (MIC) architecture

#cores -> 32... 64...

 As many LPs as cores?

Increasing the number of parts

makes the model partitioning

harder and harder

A solution is to work on each single LP

(parallelizing it)

but with current programming

languages this is not easy at all

16DIstributed SImulation and Online gaming (DISIO), 2012 Gabriele D'Angelo

The Go programming language

 General purpose programming language announced by

Google in 2009, Open Source project

 Very easy and clean syntax, with garbage collection

 The language core provides support for concurrent

execution and inter-process communication

 Main new features:

 goroutines

 channels

17DIstributed SImulation and Online gaming (DISIO), 2012 Gabriele D'Angelo

Go: goroutines

 Function executing in parallel with other goroutines, in the
same address space

 Lightweight implementation, goroutines can communicate
using shared memory

 Multiplexed into multiple OS threads

 If a goroutine is blocked waiting for I/O the others can
continue to run

 It is possible to pack multiple-goroutines in the same OS
thread, to further reduce overhead

 Very easy to implement: prefix a function or method call
with the “go” keyword

18DIstributed SImulation and Online gaming (DISIO), 2012 Gabriele D'Angelo

Go: channels (chan)

 Used for the communication between goroutines

 A chan is a data type that can be used for both

communication and synchronization

 The capacity of the chan is given by its buffer size

 Zero capacity channels are synchronous and are used for

synchronizing goroutines

 In all other cases the channels are asynchronous and used

for the transmission of typed messages

19DIstributed SImulation and Online gaming (DISIO), 2012 Gabriele D'Angelo

Go-Warp: design and implementation

 Simulator based on the Time Warp synchronization

algorithm

 Each LP is implemented using a single goroutine

 LP-to-LP communication uses asynchronous chans

 Some shared variables ease the implementation of specific

tasks (e.g. Samadi's GVT calculation, fossil collection)

 In the next version: parallel execution of some LP

internal mechanisms

20DIstributed SImulation and Online gaming (DISIO), 2012 Gabriele D'Angelo

Performance evaluation: PHOLD benchmark

 It is a simulation model, the de facto standard for the

performance evaluation of Time Warp implementations

 A set of entities, partitioned among the LPs

 Each LP contains the same number of entities

 Each entity produces and consumes events

 When an event is processed, a new one is created and

delivered to a (randomly chosen) entity

 Fixed total number of events, “almost steady state” model

21DIstributed SImulation and Online gaming (DISIO), 2012 Gabriele D'Angelo

Performance evaluation: PHOLD parameters

 Number of simulated entities (#entities)

 Event density: amount of time elapsed from the receiving of

an event and the generation of a new one (density)

 Workload: amount of synthetic work executed by the LP

when an event is processed (FPops)

 Standard values in the following performance evaluation:

simulation length = 1000 time-units, #entities = 1500,

density = 0.5 time-units, FPops = 10000

22DIstributed SImulation and Online gaming (DISIO), 2012 Gabriele D'Angelo

Execution environment and methodology

 Intel(R) Core(TM) i7-2600 CPU 3.40GHz with 4 cores and

Hyper-Threading (HT) technology

23DIstributed SImulation and Online gaming (DISIO), 2012 Gabriele D'Angelo

Execution environment and methodology

 Intel(R) Core(TM) i7-2600 CPU 3.40GHz with 4 cores and

Hyper-Threading (HT) technology

HT works duplicating some parts of the

processor except the main execution units

For the OS, each physical processor core is

seen as two “virtual” processors

24DIstributed SImulation and Online gaming (DISIO), 2012 Gabriele D'Angelo

Execution environment and methodology

 Intel(R) Core(TM) i7-2600 CPU 3.40GHz with 4 cores and

Hyper-Threading (HT) technology

HT works duplicating some parts of the

processor except the main execution units

For the OS, each physical processor core is

seen as two “virtual” processors

8 virtual cores on

a desktop PC

25DIstributed SImulation and Online gaming (DISIO), 2012 Gabriele D'Angelo

Execution environment and methodology

 Intel(R) Core(TM) i7-2600 CPU 3.40GHz with 4 cores and

Hyper-Threading (HT) technology

 8 GB RAM

 Ubuntu 11.10 (x86_64 GNU/Linux, 3.0.0-15-generic #26-

Ubuntu SMP

 Multiple runs, controlled environment, average results

26DIstributed SImulation and Online gaming (DISIO), 2012 Gabriele D'Angelo

Performance evaluation: WCT

Number of Cores

#LPs 1 2 3 4 5 6 7 8

1 1704 1691 1701 1685 1700 1683 1703 1685

2 1050 1049 1051 1056 1047 1049 1050

3 864 854 858 856 865 853

4 787 799 787 807 785

5 795 775 778 790

6 817 823 822

7 817 842

8 908

Average Wall Clock Time (milliseconds)

real cores hyper-threading

27DIstributed SImulation and Online gaming (DISIO), 2012 Gabriele D'Angelo

Performance evaluation: WCT

Number of Cores

#LPs 1 2 3 4 5 6 7 8

1 1704 1691 1701 1685 1700 1683 1703 1685

2 1050 1049 1051 1056 1047 1049 1050

3 864 854 858 856 865 853

4 787 799 787 807 785

5 795 775 778 790

6 817 823 822

7 817 842

8 908

Average Wall Clock Time (milliseconds)

real cores hyper-threading

Having #LPs > cores

is not a good idea:

 more context switches

 imbalances and extra rollbacks

28DIstributed SImulation and Online gaming (DISIO), 2012 Gabriele D'Angelo

Performance evaluation: WCT

Number of Cores

#LPs 1 2 3 4 5 6 7 8

1 1704 1691 1701 1685 1700 1683 1703 1685

2 1050 1049 1051 1056 1047 1049 1050

3 864 854 858 856 865 853

4 787 799 787 807 785

5 795 775 778 790

6 817 823 822

7 817 842

8 908

Average Wall Clock Time (milliseconds)

real cores hyper-threading

29DIstributed SImulation and Online gaming (DISIO), 2012 Gabriele D'Angelo

Performance evaluation: speedup

Number of Cores

#LPs 1 2 3 4 5 6 7 8

1 1 1 1 1 1 1 1 1

2 1.61 1.62 1.60 1.61 1.61 1.62 1.60

3 1.97 1.97 1.98 1.97 1.97 1.98

4 2.14 2.13 2.14 2.11 2.15

5 2.14 2.17 2.19 2.13

6 2.06 2.07 2.05

7 2.08 2.00

8 1.86

real cores hyper-threading

30DIstributed SImulation and Online gaming (DISIO), 2012 Gabriele D'Angelo

Performance evaluation: speedup

Number of Cores

#LPs 1 2 3 4 5 6 7 8

1 1 1 1 1 1 1 1 1

2 1.61 1.62 1.60 1.61 1.61 1.62 1.60

3 1.97 1.97 1.98 1.97 1.97 1.98

4 2.14 2.13 2.14 2.11 2.15

5 2.14 2.17 2.19 2.13

6 2.06 2.07 2.05

7 2.08 2.00

8 1.86

real cores hyper-threading

Speedup: ratio of the execution times of

the sequential algorithm (LP = 1) and the

parallel version (with n LPs)

31DIstributed SImulation and Online gaming (DISIO), 2012 Gabriele D'Angelo

Performance evaluation: speedup

Number of Cores

#LPs 1 2 3 4 5 6 7 8

1 1 1 1 1 1 1 1 1

2 1.61 1.62 1.60 1.61 1.61 1.62 1.60

3 1.97 1.97 1.98 1.97 1.97 1.98

4 2.14 2.13 2.14 2.11 2.15

5 2.14 2.17 2.19 2.13

6 2.06 2.07 2.05

7 2.08 2.00

8 1.86

real cores hyper-threading

32DIstributed SImulation and Online gaming (DISIO), 2012 Gabriele D'Angelo

Performance evaluation: #entities

33DIstributed SImulation and Online gaming (DISIO), 2012 Gabriele D'Angelo

Performance evaluation: workloads

34DIstributed SImulation and Online gaming (DISIO), 2012 Gabriele D'Angelo

Conclusions

 New approaches are needed to deal with an increasing

number of cores

 The LP and the simulation model part that it implements

need to be parallelized

 The Go programming language is an interesting choice

 The Go-Warp simulator needs to support some extra

features but has shown encouraging performance results

 The next step is to work on more realistic simulation

models

35DIstributed SImulation and Online gaming (DISIO), 2012 Gabriele D'Angelo

Further information

Gabriele D'Angelo, Stefano Ferretti, Moreno Marzolla

Time Warp on the Go

Proceedings of the 3rd Workshop on Distributed Simulation and Online gaming

(DISIO). Desenzano, Italy, March 2012

An extended version of this paper will be soon available on the

open e-print archive

In the next months the source code of Go-Warp will be released at

http://pads.cs.unibo.it

Gabriele D'Angelo

 E-mail: <g.dangelo@unibo.it>

 http://www.cs.unibo.it/gdangelo/

http://arxiv.org/
http://pads.cs.unibo.it/
mailto:g.dangelo@unibo.it
http://www.cs.unibo.it/gdangelo/

Gabriele D’Angelo
<gda@cs.unibo.it>

http://www.cs.unibo.it/gdangelo/

joint work with:
Stefano Ferretti and Moreno Marzolla

Desenzano, Italy

DIstributed SImulation & Online gaming (DISIO), 2012

Time Warp on the Go

http://disio.cs.unibo.it/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

