
Gabriele D’Angelo
<gda@cs.unibo.it>

http://www.cs.unibo.it/gdangelo/

joint work with:
Stefano Ferretti and Moreno Marzolla

Desenzano, Italy

DIstributed SImulation & Online gaming (DISIO), 2012

Time Warp on the Go

http://disio.cs.unibo.it/

2DIstributed SImulation and Online gaming (DISIO), 2012 Gabriele D'Angelo

Presentation outline

 A little background on simulation

 Parallel And Distributed Simulation (PADS)

 Synchronization: the Time Warp mechanism

 The Go programming language

 The Go-Warp simulator

 Performance evaluation: the PHOLD benchmark

 Conclusions

3DIstributed SImulation and Online gaming (DISIO), 2012 Gabriele D'Angelo

Starting from scratch: simulation

 “A computer simulation is a computation that models

the behavior of some real or imagined system over time”

(R.M. Fujimoto)

 Motivations:

 performance evaluation

 study of new solutions

 creation of virtual worlds such as online games and digital

virtual environments

 …

4DIstributed SImulation and Online gaming (DISIO), 2012 Gabriele D'Angelo

Discrete Event Simulation (DES)

 The state of the simulated system is represented through a

set of variables

 The key concept is the “event”

 An event is a change in the system state and it occurs at

an instant in time

 The evolution is given by a chronological sequence of

events

 All is done through the creation, delivery and computation

of events

5DIstributed SImulation and Online gaming (DISIO), 2012 Gabriele D'Angelo

DES on a single CPU: sequential simulation

 All such tasks are accomplished by a single execution unit

(that is a CPU and some RAM)

 PROS: it is a very simple approach

 CONS: there are a few significant limitations

 the time required to complete the simulation run

 if the model is complex the RAM could be not enough

 This approach does not scale!

6DIstributed SImulation and Online gaming (DISIO), 2012 Gabriele D'Angelo

Going Parallel: PDES

Parallel Discrete Event Simulation (PDES)

 Multiple interconnected execution units (CPUs or hosts)

 Each unit manages a part of the simulation model

 Each execution unit has to manage a local event list

 Locally generated events may have to be delivered to

remote execution units

 All of this needs to be carefully synchronized

 “Concurrent events” can be executed in parallel, this can

lead to a significant speedup of the execution

7DIstributed SImulation and Online gaming (DISIO), 2012 Gabriele D'Angelo

Parallel And Distributed Simulation (PADS)

 “Any simulation in which more than one processor is
employed” (K.S. Perumalla)

 This is a very simple and general definition, there are many
different “flavors” of PADS

 A lot of good reasons for going PADS:

 scalability

 performance (obtaining the results faster)

 to model larger and more complex scenarios

 interoperability, to integrate commercial off-the-shelf simulators

 composability of different simulation models

 to integrate simulators that are geographically distributed

 Intellectual Property (IP) protection

 ...

8DIstributed SImulation and Online gaming (DISIO), 2012 Gabriele D'Angelo

Parallel And Distributed Simulation (PADS)

 There is no global state: this is the key aspect of PADS

 A PADS is the interconnection of a set of model

components, usually called Logical Processes (LPs)

 Each LP is responsible to manage the evolution of only a part

of the simulation

 Each LP has to interact with other LPs for synchronization

and data distribution

 In practice, each LP is usually executed by a processor (or a

core in modern multi-core architectures)

9DIstributed SImulation and Online gaming (DISIO), 2012 Gabriele D'Angelo

Synchronization: on the correct order of events

 Some kind of network interconnects the LPs running the

simulation

 Each LP is executed by a different CPU (or core), possibly at

a different speed

 The network can introduce delays

 The results of a PADS are correct only if its outcome is

identical to the one obtained from the corresponding

sequential simulation

 Synchronization mechanisms are used to coordinate the

LPs: different approaches are possible

10DIstributed SImulation and Online gaming (DISIO), 2012 Gabriele D'Angelo

In-depth: synchronization, causal ordering

 All generated events have to be timestamped and delivered
following a message-passing approach

 Two events are in causal order if one of them can have
some consequences on the other

 The execution of events in non causal order leads to
causality errors

 In a sequential simulation it is easy avoid causality errors
given that there is a single ordered pending event list

 But in a PADS this is much harder!

 In this case the goal is to:

 execute events in parallel, as much as possible

 do not introduce causality errors

11DIstributed SImulation and Online gaming (DISIO), 2012 Gabriele D'Angelo

In-depth: synchronization, approaches

 The most studied aspect in PADS because of its importance

 Many different approaches and variants have been proposed,

with some simplification three main methods:

 time-stepped: the simulated time is divided in

fixed-size timesteps

 conservative: causality errors are prevented,

the simulator is built to avoid them

 optimistic: the causality constraint can be violated and

errors introduced. In case of causality

violations the simulator will fix them

12DIstributed SImulation and Online gaming (DISIO), 2012 Gabriele D'Angelo

In-depth: synchronization, optimistic

 The LPs are free to violate the causality constraint

 They can process events in receiving order (vs. timestamp

order)

 There is no a priori attempt to avoid causality violations

 In case of violation this will be detected and appropriate

mechanisms will be used to go back to a prior state

 The main mechanism is the roll back of internal state

variables of the LP in which happened the violation

 If the error propagated to other LPs, then also the roll back

has to be propagated to all the affected LPs

13DIstributed SImulation and Online gaming (DISIO), 2012 Gabriele D'Angelo

In-depth: synchronization, Time-warp

 The Jefferson's Time Warp mechanisms implements optimistic

synchronization

 Each LP processes all events that it has received up to now

 An event is “late” if it has a timestamp that is smaller than the

current clock value of the LP (that is the timestamp of the last

processed event)

 The violation of local causality is fixed with the roll-back of

all the internal state variables of the simulated model

 The violation has likely propagated to other LPs

 The goal of “anti-messages” is to annihilate the

corresponding unprocessed events in LPs pending event list or

to cause a cascade of roll-backs up to a globally correct

state

14DIstributed SImulation and Online gaming (DISIO), 2012 Gabriele D'Angelo

 Multi and many cores processors

 General purpose CPUs: Intel 10-core Xeon processors,

UltraSPARC T3 (16 cores), AMD FX-series (up to 8 cores)

 Embedded market: Tile-GX (100 cores) and many others

What is next? What is wrong?

 In the (near) future: Intel Many

Integrated Core (MIC) architecture

#cores -> 32... 64...

 As many LPs as cores?

15DIstributed SImulation and Online gaming (DISIO), 2012 Gabriele D'Angelo

 Multi and many cores processors

 General purpose CPUs: Intel 10-core Xeon processors,

UltraSPARC T3 (16 cores), AMD FX-series (up to 8 cores)

 Embedded market: Tile-GX (100 cores) and many others

What is next? What is wrong?

 In the (near) future: Intel Many

Integrated Core (MIC) architecture

#cores -> 32... 64...

 As many LPs as cores?

Increasing the number of parts

makes the model partitioning

harder and harder

A solution is to work on each single LP

(parallelizing it)

but with current programming

languages this is not easy at all

16DIstributed SImulation and Online gaming (DISIO), 2012 Gabriele D'Angelo

The Go programming language

 General purpose programming language announced by

Google in 2009, Open Source project

 Very easy and clean syntax, with garbage collection

 The language core provides support for concurrent

execution and inter-process communication

 Main new features:

 goroutines

 channels

17DIstributed SImulation and Online gaming (DISIO), 2012 Gabriele D'Angelo

Go: goroutines

 Function executing in parallel with other goroutines, in the
same address space

 Lightweight implementation, goroutines can communicate
using shared memory

 Multiplexed into multiple OS threads

 If a goroutine is blocked waiting for I/O the others can
continue to run

 It is possible to pack multiple-goroutines in the same OS
thread, to further reduce overhead

 Very easy to implement: prefix a function or method call
with the “go” keyword

18DIstributed SImulation and Online gaming (DISIO), 2012 Gabriele D'Angelo

Go: channels (chan)

 Used for the communication between goroutines

 A chan is a data type that can be used for both

communication and synchronization

 The capacity of the chan is given by its buffer size

 Zero capacity channels are synchronous and are used for

synchronizing goroutines

 In all other cases the channels are asynchronous and used

for the transmission of typed messages

19DIstributed SImulation and Online gaming (DISIO), 2012 Gabriele D'Angelo

Go-Warp: design and implementation

 Simulator based on the Time Warp synchronization

algorithm

 Each LP is implemented using a single goroutine

 LP-to-LP communication uses asynchronous chans

 Some shared variables ease the implementation of specific

tasks (e.g. Samadi's GVT calculation, fossil collection)

 In the next version: parallel execution of some LP

internal mechanisms

20DIstributed SImulation and Online gaming (DISIO), 2012 Gabriele D'Angelo

Performance evaluation: PHOLD benchmark

 It is a simulation model, the de facto standard for the

performance evaluation of Time Warp implementations

 A set of entities, partitioned among the LPs

 Each LP contains the same number of entities

 Each entity produces and consumes events

 When an event is processed, a new one is created and

delivered to a (randomly chosen) entity

 Fixed total number of events, “almost steady state” model

21DIstributed SImulation and Online gaming (DISIO), 2012 Gabriele D'Angelo

Performance evaluation: PHOLD parameters

 Number of simulated entities (#entities)

 Event density: amount of time elapsed from the receiving of

an event and the generation of a new one (density)

 Workload: amount of synthetic work executed by the LP

when an event is processed (FPops)

 Standard values in the following performance evaluation:

simulation length = 1000 time-units, #entities = 1500,

density = 0.5 time-units, FPops = 10000

22DIstributed SImulation and Online gaming (DISIO), 2012 Gabriele D'Angelo

Execution environment and methodology

 Intel(R) Core(TM) i7-2600 CPU 3.40GHz with 4 cores and

Hyper-Threading (HT) technology

23DIstributed SImulation and Online gaming (DISIO), 2012 Gabriele D'Angelo

Execution environment and methodology

 Intel(R) Core(TM) i7-2600 CPU 3.40GHz with 4 cores and

Hyper-Threading (HT) technology

HT works duplicating some parts of the

processor except the main execution units

For the OS, each physical processor core is

seen as two “virtual” processors

24DIstributed SImulation and Online gaming (DISIO), 2012 Gabriele D'Angelo

Execution environment and methodology

 Intel(R) Core(TM) i7-2600 CPU 3.40GHz with 4 cores and

Hyper-Threading (HT) technology

HT works duplicating some parts of the

processor except the main execution units

For the OS, each physical processor core is

seen as two “virtual” processors

8 virtual cores on

a desktop PC

25DIstributed SImulation and Online gaming (DISIO), 2012 Gabriele D'Angelo

Execution environment and methodology

 Intel(R) Core(TM) i7-2600 CPU 3.40GHz with 4 cores and

Hyper-Threading (HT) technology

 8 GB RAM

 Ubuntu 11.10 (x86_64 GNU/Linux, 3.0.0-15-generic #26-

Ubuntu SMP

 Multiple runs, controlled environment, average results

26DIstributed SImulation and Online gaming (DISIO), 2012 Gabriele D'Angelo

Performance evaluation: WCT

Number of Cores

#LPs 1 2 3 4 5 6 7 8

1 1704 1691 1701 1685 1700 1683 1703 1685

2 1050 1049 1051 1056 1047 1049 1050

3 864 854 858 856 865 853

4 787 799 787 807 785

5 795 775 778 790

6 817 823 822

7 817 842

8 908

Average Wall Clock Time (milliseconds)

real cores hyper-threading

27DIstributed SImulation and Online gaming (DISIO), 2012 Gabriele D'Angelo

Performance evaluation: WCT

Number of Cores

#LPs 1 2 3 4 5 6 7 8

1 1704 1691 1701 1685 1700 1683 1703 1685

2 1050 1049 1051 1056 1047 1049 1050

3 864 854 858 856 865 853

4 787 799 787 807 785

5 795 775 778 790

6 817 823 822

7 817 842

8 908

Average Wall Clock Time (milliseconds)

real cores hyper-threading

Having #LPs > cores

is not a good idea:

 more context switches

 imbalances and extra rollbacks

28DIstributed SImulation and Online gaming (DISIO), 2012 Gabriele D'Angelo

Performance evaluation: WCT

Number of Cores

#LPs 1 2 3 4 5 6 7 8

1 1704 1691 1701 1685 1700 1683 1703 1685

2 1050 1049 1051 1056 1047 1049 1050

3 864 854 858 856 865 853

4 787 799 787 807 785

5 795 775 778 790

6 817 823 822

7 817 842

8 908

Average Wall Clock Time (milliseconds)

real cores hyper-threading

29DIstributed SImulation and Online gaming (DISIO), 2012 Gabriele D'Angelo

Performance evaluation: speedup

Number of Cores

#LPs 1 2 3 4 5 6 7 8

1 1 1 1 1 1 1 1 1

2 1.61 1.62 1.60 1.61 1.61 1.62 1.60

3 1.97 1.97 1.98 1.97 1.97 1.98

4 2.14 2.13 2.14 2.11 2.15

5 2.14 2.17 2.19 2.13

6 2.06 2.07 2.05

7 2.08 2.00

8 1.86

real cores hyper-threading

30DIstributed SImulation and Online gaming (DISIO), 2012 Gabriele D'Angelo

Performance evaluation: speedup

Number of Cores

#LPs 1 2 3 4 5 6 7 8

1 1 1 1 1 1 1 1 1

2 1.61 1.62 1.60 1.61 1.61 1.62 1.60

3 1.97 1.97 1.98 1.97 1.97 1.98

4 2.14 2.13 2.14 2.11 2.15

5 2.14 2.17 2.19 2.13

6 2.06 2.07 2.05

7 2.08 2.00

8 1.86

real cores hyper-threading

Speedup: ratio of the execution times of

the sequential algorithm (LP = 1) and the

parallel version (with n LPs)

31DIstributed SImulation and Online gaming (DISIO), 2012 Gabriele D'Angelo

Performance evaluation: speedup

Number of Cores

#LPs 1 2 3 4 5 6 7 8

1 1 1 1 1 1 1 1 1

2 1.61 1.62 1.60 1.61 1.61 1.62 1.60

3 1.97 1.97 1.98 1.97 1.97 1.98

4 2.14 2.13 2.14 2.11 2.15

5 2.14 2.17 2.19 2.13

6 2.06 2.07 2.05

7 2.08 2.00

8 1.86

real cores hyper-threading

32DIstributed SImulation and Online gaming (DISIO), 2012 Gabriele D'Angelo

Performance evaluation: #entities

33DIstributed SImulation and Online gaming (DISIO), 2012 Gabriele D'Angelo

Performance evaluation: workloads

34DIstributed SImulation and Online gaming (DISIO), 2012 Gabriele D'Angelo

Conclusions

 New approaches are needed to deal with an increasing

number of cores

 The LP and the simulation model part that it implements

need to be parallelized

 The Go programming language is an interesting choice

 The Go-Warp simulator needs to support some extra

features but has shown encouraging performance results

 The next step is to work on more realistic simulation

models

35DIstributed SImulation and Online gaming (DISIO), 2012 Gabriele D'Angelo

Further information

Gabriele D'Angelo, Stefano Ferretti, Moreno Marzolla

Time Warp on the Go

Proceedings of the 3rd Workshop on Distributed Simulation and Online gaming

(DISIO). Desenzano, Italy, March 2012

An extended version of this paper will be soon available on the

open e-print archive

In the next months the source code of Go-Warp will be released at

http://pads.cs.unibo.it

Gabriele D'Angelo

 E-mail: <g.dangelo@unibo.it>

 http://www.cs.unibo.it/gdangelo/

http://arxiv.org/
http://pads.cs.unibo.it/
mailto:g.dangelo@unibo.it
http://www.cs.unibo.it/gdangelo/

Gabriele D’Angelo
<gda@cs.unibo.it>

http://www.cs.unibo.it/gdangelo/

joint work with:
Stefano Ferretti and Moreno Marzolla

Desenzano, Italy

DIstributed SImulation & Online gaming (DISIO), 2012

Time Warp on the Go

http://disio.cs.unibo.it/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

