Multiplayer Online Games over Scale-Free Networks: a Viable Solution?

<gda@cs.unibo.it> http://www.cs.unibo.it/gdangelo/

> *joint work with:* **Stefano Ferretti**

Torremolinos, Malaga (Spain)

DIstributed **SI**mulation & **O**nline gaming (**DISIO**), 2010

Presentation **outline**

- Multiplayer Online Games: scalability and responsiveness
- MOGs: a peer-to-peer approach
- Scale-free networks
- Gossip protocols
- Performance evaluation: simulation-based
- Performance evaluation: metrics
- Experimental evaluation
- Conclusions and future work

MOGs: scalability and responsiveness

- Scalability and responsiveness are open problems in Multiplayer Online Games (MOGs)
- Several architectures have been proposed to support MOGs:
 - client/server
 - mirrored servers
 - peer-to-peer
- Given the distributed nature of this kind of applications, the dissemination of game events can be very costly
- Under the scalability viewpoint the peer-to-peer approach is very promising

- Each peer locally manages its copy of the game state
- The peers are organized in some form of overlay network
- The dissemination of game events is obtained by passing messages through the overlay
- What is the **best form of overlay**?
 - tree
 - fully connected graph
 - random graph
 - scale-free network

- Each peer locally manages its copy of the game state
- The peers are organized in some form of overlay network
- The dissemination of game events is obtained by passing messages through the overlay
- What is the **best form of overlay**?
 - tree
 - fully connected graph
 - random graph
 - scale-free network

- Each peer locally manages its copy of the game state
- The peers are organized in some form of overlay network
- The dissemination of game events is obtained by passing messages through the overlay
- What is the **best form of overlay**?
 - tree
 - fully connected graph
 - random graph
 - scale-free network

- Each peer locally manages its copy of the game state
- The peers are organized in some form of overlay network
- The dissemination of game events is obtained by passing messages through the overlay
- What is the **best form of overlay**?
 - tree
 - fully connected graph
 - random graph
 - scale-free network

- Each peer locally manages its copy of the game state
- The peers are organized in some form of **overlay network**
- The dissemination of game events is obtained by passing messages through the overlay
- What is the **best form of overlay**?
 - tree
 - fully connected graph
 - random graph
 - scale-free network

Scale-free networks: definition

- A graph can be used to represent a network and its connectivity
- Degree of a node = number of neighbor nodes attached to it
- A scale-free network has a degree
 distribution that follows a power law
- If p^k is the probability that a node has a degree equal to k then: p^k ~ k^{-a} for some constant value a (usually: 2 < a < 3)</p>
- Many examples in the real world: the Web, transmission of diseases, citation graphs, social networks interactions etc.

This means:

- a few highly connected nodes (hubs)
- a very large number of nodes with a few connections
- networks with a very small diameter

For example:

- with **2 < a < 3**
 - the diameter of a network with **N** nodes is ~ In In (N)

Scale-free networks for MOGs

- Our proposal is to implement MOGs using a peer-to-peer architecture that is partially "unstructured" and "spontaneous"
- Some properties of scale-free networks (such as the diameter) can be very valuable in supporting scalability and responsiveness
- In our view, the dissemination of game events will be obtained through probabilistic approaches, for example using gossip protocols
- The game events generated at peers are disseminated to the whole network, using very simple gossip protocols and without any form of centralization or predefined routing

Gossip protocol #1: probabilistic broadcast

 If the message is locally generated then it is broadcasted to all neighbors, otherwise it is decided at random if it will be broadcasted or ignored

PARAMETERS:

p_b = probability to broadcast a message

ADDITIONAL MECHANISMS:

- time to live (ttl) in each message
- Iocal cache in each node

ALGORITHM function INITIALIZATION() $p_{h} \leftarrow PROBABILITY BROADCAST()$ function GOSSIP(msg) if $(RANDOM() < p_{b} or$ FIRST TRANSMISSION()) then for all n_i in Π_i do $SEND(msg, n_i)$ end for

end if

Gossip protocol #2: fixed probability

For each received message, the
 node randomly selects those edges
 through which the message must
 be propagated

PARAMETERS:

v = threshold value

ADDITIONAL MECHANISMS:

- time to live (ttl) in each message
- Iocal cache in each node

function INITIALIZATION() $v \leftarrow CHOOSE PROBABILITY()$ function GOSSIP(msg) for all n_i in Π_i do **if** RANDOM() < v **then** $SEND(msg, n_i)$ end if end for

ALGORITHM

Gossip protocol #3: fixed fanout

 Each message is sent only to a limited number of nodes, the receivers are selected at random among the neighbors

PARAMETERS:

fanout = total number of receivers

ADDITIONAL MECHANISMS:

- time to live (ttl) in each message
- Iocal cache in each node

ALGORITHM function INITIALIZATION() fanout ← RETRIEVE FANOUT() function GOSSIP(msg) if fanout $\geq |\Pi_i|$ then toSend $\leftarrow \Pi_i$ else SELECT NODES() end if for all n_i in toSend do $SEND(msg, n_i)$ end for

Distributed Simulation and Online Gaming (DISIO) 2010

Performance evaluation: simulation-based

- The following performance evaluation is based on **simulation**
- New features implemented in the Parallel and distributed Scalefree network Simulator (**PaScaS**): http://pads.cs.unibo.it

Parameter	Value
number of nodes	0-500
message generation	<i>exponential distribution mean = 50 time-steps</i>
cache size (local to each node)	256 <i>slots</i>
message Time To Live (ttl)	6
probability of dissemination (\mathbf{v})	0.5, 0.8, 1 <i>(i.e. 50-80-100%)</i>
fanout value	5 (# of nodes)
probability of broadcast (p _b)	0.5, 0.8, 1 (<i>i.e. 50-80-100%</i>)
simulated time (gaming time)	1000 time-steps (after building)

Coverage

percentage of nodes that have received all the messages that have been produced during the whole game execution "are the game events received by all gamers?"

Delay

 average number of hops (that is time-steps) necessary to receive a message after its creation

"is the data dissemination really responsive?"

Messages

total number of messages routed in the game execution

"what is the overhead due to the events dissemination?"

Evaluation: coverage rate (%)

Evaluation: number of **hops**

Evaluation: total number of **messages**

Evaluation: coverage rate (%)

Gossip protocols evaluation: coverage

Evaluation: number of **hops**

Gossip protocols evaluation: delay Cond. Broadcast, pb=80%, ttl=6, cache=256 Fixed Prob., v=80%, ttl=6, cache=256 Cond. Broadcast, pb=100%, ttl=6, cache=256 Fixed Prob., v=100%, ttl=6, cache=256 Delay (number of hops) Number of nodes

Evaluation: total number of **messages**

Conclusions and **Future work**

- The low diameter of scale-free networks is very good for fast data dissemination
- Common gossip protocols are unable to disseminate the whole event trace and their overhead is very high
- Simple mechanisms such as caching of packets, ttl and protocols tweaking are quite ineffective or with limited impact on performances (*e.g. # of routed messages*)
- Smarter protocols are necessary:
 - push / pull approaches for data dissemination
 - adaptive protocols and behaviors
 - more information shared among network nodes

Multiplayer Online Games over Scale-Free Networks: a Viable Solution?

