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Abstract. This paper illustrates the definition and analysis of a collec-
tion of solutions adopted to increase the performance of communication
and computation activities required by the implementation and execu-
tion of parallel and distributed simulation processes. A preliminary anal-
ysis of modeling and simulation issues is given to illustrate a set of back-
ground assumptions, and the resources’ and performance bottlenecks
emerging for a computer simulation of complex, massive and dynamic
models. Parallel and distributed simulation has been defined, and a real
testbed simulation scenario has been illustrated, based on the ARTIS
parallel and distributed simulation framework. Three classes of solutions
have been proposed to improve the performance of simulations executed
over commodity off-the-shelf computation and communication architec-
tures: multi-threaded software and Hyper-Threading support by the pro-
cessor architectures, data marshalling solutions for shared-memory and
network-based communications, and data structure optimization for sim-
ulation events’ management. All the proposed solutions have been eval-
uated on a testbed evaluation scenario, under variable configurations.
Results obtained demonstrate that a performance improvement can be
obtained by adopting and tuning the proposed solutions. The experi-
mental analysis has provided some interesting guidelines about the way
to adopt and to compose the proposed solutions, under the considered
simulation testbed. Most of the guidelines could be considered generally
extensible to other simulation frameworks, models and execution scenar-
ios.

1 Introduction

“A simulation is a system that represents or emulates the behavior of another
system over time. In a computer simulation the system doing the emulating is a
computer program” [22]. The computer simulation is a widely adopted technique
to obtain “a priori” insights of behavioral issues, and performance evaluation of
theoretic, complex and dynamic systems and system architectures. Specifically,
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in many circumstances, simulation models and related simulation techniques
and tools have been shown to be the most effective and affordable way to find
accurate solutions in the design, tuning and performance evaluation of complex
systems.

A stable trend in recent research activities is the requirement for the design,
tuning and performance evaluation of even more complex and dynamic systems.
Complex systems may be composed by a massive amount of entities. Each system
entity could be modeled by complex data structures defining the whole entity
state, and by a complex algorithmic definition that incarnates detailed functional
and computation aspects that govern the entity-state, the interactions, and the
aggregate system-state evolution.

At an abstract level, a simulation can be seen as a process execution manag-
ing a huge set of state variables: each variable update is activated by a simulated
event. Every update may require a complex state computation, and would repre-
sent a step in the behaviour of a portion of the simulated system. The simulation
can be implemented by one (single or monolithic) process, or more than one (par-
allel or distributed) processes. Monolithic simulations may suffer the bottleneck
limitation of memory and computation, being executed over single CPUs and
classical execution architectures. On the other hand, parallel and distributed
simulations could exploit aggregate memory and computation resources (that
is, multiple CPUs interconnected via shared memory and/or communication
network architectures). Unfortunately, parallel and distributed simulations may
suffer the bottleneck limitation of the communication system required to sup-
port the huge amount of synchronization and communication messages between
multiple synchronized processes.

A great amount of research has been done in recent years in the design
and implementation of scalable and efficient simulation systems and frameworks
supporting the simulation processes for detailed analysis and tuning of complex,
massive and dynamic models of real or hypothetic systems [18].

The execution of simulation analysis would require efficient and high perfor-
mance computation and communication architectures. Specific and tailored high
performance architectures could be designed, purchased and used for the simu-
lation purpose. On the other hand, the simulation processes are often performed
over legacy computation and communication architectures, like clusters of per-
sonal computers and Ethernet LANSs, basically for recycling the hardware and for
cost reduction. For this reason, the improvement of simulation system scalability
and efficiency over commodity off-the-shelf (COTS) architectures has been con-
sidered at many layers. Recently, solutions have been proposed and implemented
in general simulation frameworks, to assist, to adapt and to optimize the data
structures, the model partitioning, load balancing and resource sharing, com-
munication control and communication reduction [19,16,21,34,27,17,28]. This
was considered in order to make more scalable and efficient the simulation-based
investigation of complex, massive and dynamic models. The aim of this paper
is to introduce main motivations and new dimensions for the research about
scalability and efficiency issues of simulation frameworks executed over general
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purpose system architectures. Specifically, in this paper some recently introduced
solutions for the processor architectures and communication network technolo-
gies have been preliminary investigated. The analysis is performed under a real
testbed evaluation, based on a parallel and distributed simulation framework
(ARTIS), executed over a commodity off-the-shelf (COTS) multiprocessor exe-
cution architecture and network architecture. The results presented in this paper
involve the performance analysis and guidelines derived about the mixed adop-
tion of Hyper-Threading processors, single-threaded and multi-threaded software
architectures, data marshalling solutions for communications and data structure
optimizations. In general, to the best of our knowledge, all the solutions analyzed
in this paper have never been considered in order to improve the performance of
computation and communication of simulation processes executed over COTS
computation and communication architectures. Results obtained confirm that
performance speedup can be obtained by considering and exploiting the pro-
posed features, by offering experimental evidence to practical guidelines and
limitations. In order to characterize the simulation environments, the next sec-
tion will introduce to some general concepts useful to understand the common
assumptions for the execution of simulation processes. The paper structure is
the following: section II illustrates some general concepts about the execution
of simulation processes, that will be useful to define the assumptions and guide-
lines for subsequent work, section III will illustrate the state of the art in the
field of parallel and distributed simulation, section IV will introduce the simu-
lation framework that we adopt as a testbed for our analysis (ARTIS), section
V will illustrate the analysis of the Hyper-Threading features of processors in
the context of parallel and distributed simulations, section VI will illustrate the
Data Marshalling concept and analysis to improve the communication efficiency,
section VII will illustrate the simulation Data Structure optimization concepts
and related analysis, and section VIII will conclude the paper.

2 Simulation: assumptions, systems, models and
optimization

The aim of a simulation is to create a syntetic evolution of the system model,
in order to capture data about the behavioral essence of the model counter-
part, that is, a real system behavior. The collected data are usually required
for the statistical analysis of pre-determined performance indices. Most of to-
days’ simulation-based analysis are characterized by the modeling of complex,
dynamic and massively populated systems: as an example, mobile ad hoc and
sensor networks, social and biology inspired systems, embedded systems.

A dynamic system may be characterized by model entities with correlated
mutually dependent behaviors, varying over time. The evolution of model entities
could be defined as the history of state updates as a function of the simulated
time. The simulated time is the abstraction of the time concept used to emulate
the time in the simulated system. The system entities’ evolution is emulated
by a computer program that mimics their causal sequence of fine-grained state
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transitions, that is, the system events. This kind of simulation is called discrete
event simulation (DES), since events (state updates) occur at discrete points in
the simulated time. The execution of one event by a model entity may in turn
generate a sequence of related events, like in a real domino effect of causal events.
Model events must be executed in causal (that is, chronological) order. This
assumption safely implements the cause-effect rules that would have governed
the evolution of real systems’ components. In other words, the simulation process
must manage the simulated time-advancing for the simulated system, and must
ensure that events happening “at the current simulated time” will have effects
on the state variables updates only after all the updates of events occurred in
the “past simulated time” have been completed. One solution to implement a
correct time management and event ordering for discrete event simulations is the
event-list approach. Events are tagged with a label indicating the simulated time
of occurrence (timestamp), and can be managed simply by inserting future-event
messages in a single event-list, in timestamp order. A simulation process called
event-scheduler is in charge of extracting the next future event from the list, and
to activate the execution of event management computations for all the model
entities involved. In this way every model entity will update its own state as a
reaction to the current event. When all model entities will have executed their
respective event management, the control will return to the event scheduler. In
the system evolution, based on the model entity definitions, the execution of one
event may in turn generate or cancel future events from the single event-list.
Since the event list is a centralized data structure, and the event-scheduler acts
as a synchronization barrier, the problem of determining the “next event” after
the execution of the “current event” is easily solved in deterministic way.

In the legacy approach for a computer simulation, the simulation software
is executed on a single processing unit, by obtaining a monolithic simulation.
Memory and computation bottlenecks may limit the model scalability and often
require huge amount of time to complete the analysis. These problems are even
more critical when the modeling and simulation is executed over commodity off-
the-shelf (COTS) architectures, and the simulation is targeted to the evaluation
of complex and dynamic systems. The need to evaluate complex systems with
thousands or even millions simulated entities is often impossible to satisfy due
to resources’ limitations. On the other hand, when simulation is sustainable, the
dense event management of complex and dynamic systems may result in low
simulation efficiency and long time required to complete the simulation analysis
[15].

An alternative approach to support scalable and efficient simulation of com-
plex and dynamic systems is based on the exploitation of parallel and distributed
communication and computation systems [22]. The advantage of Parallel and
Distributed Simulation (PADS) techniques is given by the exploitation of ag-
gregate resources (memory and computation power of a collection of Physical
Execution Units, PEUs) and by the potential exploitation of the model con-
currency under the model-update and state-computation viewpoint. This may
translate in a reduction of the computation time required to complete the anal-
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ysis of the model evolution in a given scenario. A PADS framework is composed
by a set of cooperating computation units managing the model state evolution
in distributed way. The simulation is partitioned in a set of Logical Processes
(LPs), each one managing the evolution of a subset of simulated model enti-
ties. Many LPs could be partitioned and executed over a set of different PEUs.
Usually, one LP is allocated over one PEU, but one PEU could accomodate
the execution of many LPs. A “parallel simulation” is defined as a simulation
process managed over a computation architecture where two ore more PEUs
are interconnected by a low latency communication bus (as an example, SMP
shared memory systems). A “distributed simulation” is defined as a simulation
process managed over a set of loosely-coupled PEUs, interconnected by a high la-
tency network (i.e. LAN, WAN, Internet). The execution of ordered interactions
between model entities requires the management of simulated time, and the no-
tification of event messages and state updates under the control of a distributed
simulation manager.

The distributed simulation management maintains the simulated time syn-
chronization of many LPs. Distributed systems lack of a central notion of time
[26]. Each processing unit has a local clock, and a synchronization algorithm is
required to avoid violations of the causal order of events during the simulation
execution. T'wo approaches have been proposed to manage the distributed simu-
lated time synchronization: conservative and optimistic algorithms. In the former
case the causality violations must be avoided by the synchronization algorithm.
In the latter case violations are allowed, resulting in more efficient synchroniza-
tion and time management, but a roll-back of the model state to previously
saved consistent states is executed, if and when a violation is detected. Needless
to say, rollbacks imply significant overheads in terms of memory, communication
and computation.

The assumption of a simulation process is that the evolution of the sys-
tem model must be the same, and must be equally repeatable in deterministic
way, under both the monolithic and the parallel (or distributed) simulation ap-
proaches. In order to share the information about event messages, which may
be generated by distributed LPs over foreign PEUs, the simulation management
must coordinate and synchronize the exchange of event messages among LPs.
The communication of event messages is realized by means of a data commu-
nication infrastructure between the PEUs. Communication can be realized over
shared memory systems (parallel simulation), or distributed systems (network-
based communication). In both scenarios, the communication bottleneck may re-
sult in an inverse trade-off limitation to simulation scalability and performance,
with respect to the computation and memory bottlenecks of monolithic simula-
tion architectures. The communication among model entities must be scalable,
balanced and efficient. Unfortunately, in complex, massive and dynamic systems
the communication pattern among model entities is dense, unpredictable, and
variable. For this reason, all the efforts in the static (offline) optimization and
balancing of distributed computation and communication systems would result
in a fast degradation of simulation performances.
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One of the primary research goals to increase the PADS efficiency is to in-
troduce adaptive and runtime mechanisms able to reduce the amount of infor-
mation propagated by each LP. This task is usually accomplished by managing
a publish/subscribe mechanism. The set of related algorithms and methods is
usually referred to as Data Distribution Management (DDM). In absence of a
proper DDM the communication and synchronization overhead caused by highly
dynamic system models can significantly affect the simulation efficiency [15].

In the following, it will be illustrated the state of the art in the field of effi-
cient and scalable PADS of complex and dynamic systems. Specifically, a recent
framework for PADS will be illustrated, together with optimization solutions
that have been proposed to increase the simulation efficiency and scalability.
The original contribution of this paper is given by the analysis of the proposed
simulation framework obtained by considering a set of solutions and features
that have been recently enabled by common CPU and network architectures
and operating systems’ support: the Hyper-Threading feature of processors and
the data marshalling techniques for network communication.

3 Parallel and Distributed Simulation: state of the art

The parallel and distributed simulation (PADS) field has been widely studied
in the past, resulting in the design and implementation of many tools to assist
the simulation processes [18]. The joint contribution of at least three different
research communities is converging for this design: high performance comput-
ing, military (defense) modeling and simulation, and distributed gaming on-
line. In recent years, a good number of PADS tools have been proposed: Maisie
[6,11], PDNS [8], DaSSF [1,20],TeD [2,31], Glomosim/Qualnet [9]. Unfortu-
nately, the weak performances and the lack of a standard has limited the model
reuse and tools’ interoperability, with low potential impact of PADS technol-
ogy on real world applications. After the year 2000, under the auspices of the
US Department of Military Simulation Office (DMSO), the IEEE 1516 standard
for distributed simulation (High Level Architecture, HLA) has been approved
[5]. The guidelines, rules and interfaces for PADS frameworks’ interoperability
enabled the adoption and convergence of standard PADS frameworks. On the
other hand, the HLA standard leaves complete freedom about the methodologies
and techniques to implement the PADS frameworks. Given these premises, and
given the PADS limitations like the distributed synchronization and communi-
cation bottlenecks of distributed execution architectures, a wide community of
researchers started the design and implementation of efficient HLA-based solu-
tions for PADS. Each community proposed and investigated solutions for im-
prove the simulation efficiency and resources’ utilization. The more investigated
areas for PADS optimization have been: i) synchronization algorithms, ii) data
distribution management techniques, iii) load balancing management.

A substantial amount of work has been done to find good solutions for syn-
chronization, that is, for maintaining the distributed system causality, by avoid-
ing or by correcting event-causality violations. A set of algorithms and techniques
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to reduce the synchronization overheads have been proposed, based on different
modeling assumptions, different synchronization paradigms (conservative or op-
timistic), and exploitation of properties of both execution and communication
architectures.

Under the DDM viewpoint, many DDM approaches, as spheres of influence,
responsibility domains, multicast group allocation, have been investigated to
reduce the computation overheads and to minimize the amount of information
to be transferred between distributed model components [25,27, 28,19, 33].

The load balancing problem has been analyzed under a single-dimensional
CPU load optimization viewpoint, or under a bi-dimensional optimization func-
tion (CPU and network load). The model partitioning problem merges both
dimensions of the simulation load balancing: the ideal model partition is the one
that allocates the model entities over the set of LPs with i) optimal load balanc-
ing of CPU computation required by each LP, and ii) by reducing to the min-
imun the communication required to maintain LPs synchronization and DDM.
Given the premises above, the optimal model partitioning problem has solutions
obtainable with an analytic approach under static conditions. Unfortunately,
the PADS of complex and dynamic systems is characterized by variable and
unpredictable CPU and network loads, determined by dynamic model entities
behavior. Any optimal solution obtained under a static analysis would become
sub-optimal within few steps, due to the model entities evolution. The general
solution would be to improve the ability of the model partitioning to adapt to
model dynamics during the simulation process, as an example by implementing
some kind of dynamic entity migration support [15,13].

The aforementioned research has produced high impacts on the PADS field,
often increasing the simulation performances and scalability. Most of the times
the real world simulation environment is quite complex: it is based on processors
and network hardware/software architectures which needs attention to many
details, in order to improve performances, instead of increasing overheads.

In the next section a recently proposed PADS middleware, called ARTIS will
be described. In subsequent sections, ARTIS will be used as a testbed for our
high performance computing investigations. Specifically, some investigations will
compare the ARTIS performances under the exploitation of processor hardware
features, simulation data structures optimization and communication optimiza-
tion. This will contribute to demonstrate the impact of high performance com-
puting and communication solutions on the testbed simulation performances.

4 ARTIS: a PADS middleware

ARTIS (Advanced RTT System) is a recently proposed middleware, designed
to support parallel and distributed simulations of complex system models [12,
10]. A number of existing runtimes compliant to the HLA IEEE 1516 standard
are available [18]. Some runtimes suffer of implementation criticisms, the source
code is not available, and they miss interesting features (as entity migration
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support, and security). These observations stimulated the design of the ARTIS
middleware.

In ARTiS, many design optimizations have been realized for the synchro-
nization and communication protocols’ adaptation over heterogeneous execution
systems (basically, Local Area Network and Shared Memory mono- and multi-
processor architectures). The communication and synchronization middleware in
charge of the adaptation is completely user-transparent. ARTIS is organized as a
stack-based middleware architecture of logical modules. The middleware is able
to select in adaptive way the best communication module with respect to the
dynamic allocation of LPs over the execution environment. The ARTIS runtime
(RTT) kernel is realized on the top of the communication modules, and it is com-
posed by a set of management modules, whose structure and roles have been
inherited by a typical HLA-based simulation middleware. Other management
modules include the Data Distribution Management (DDM), Time Manage-
ment, Federation Management, Declaration Management, Object Management,
and Ownership Management. Currently, ARTIS supports both the conserva-
tive (time-stepped approach and the Chandy-Misra-Bryant [30]) and optimistic
(Time Warp) [24] synchronization management.

The ARTIS runtime exports a modular set of application programming in-
terfaces (APIs), designed to satisfy different integration and compliance require-
ments at the user simulation layer. The ARTIS architecture will be extended to
full TEEE 1516 compliance, and will include a set of APIs specifically oriented
to support Internet Gaming applications [23,10].

In the next sections, by following a bottom-up approach, we will introduce
some details about some additional optimizations that can be applied to ARTIS
(and other PADS architectures), by exploiting high computation and communi-
cation performance solutions.

5 Exploiting advanced processor features:
Hyper-Threading

The Hyper-Threading technology (HT) is a new processor architecture recently
introduced by Intel [29,4]. HT technology makes a single physical processor ap-
pearing as two logical processors at the user’s level. To achieve best performances,
the operating system should natively support the HT technology. In general, one
physical execution resource (CPU) is shared between two logical processors. To
obtain this effect, with low overheads introduced, the HT technology duplicates
the high level portion of the architecture state on each logical processor, while
logical processors share a subset of the physical processor execution resources.

Some experimental results from Intel [29,4] have shown an improvement
of CPU resources’ utilization, together with higher processing throughput, for
multi-threaded applications with respect to single-threaded executions. Under
optimal assumptions and conditions, the performances shown an increase near
to 30%.
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The HT diffusion is rapidly increasing, and the technology is moving fast from
the server arena to the desktop side, thanks to the scale-economy cost reduction
of HT processors. Intel’s roadmap forecasts HT as a partial step towards the
highly expected introduction of multi-core technology [7].

Very recently the HT has gained some attention due to a disclosed vulnera-
bility of Intel’s HT cores [32], which could be exposed to some possible privacy
and security issues. Basically, since threads share the same processor’s chache,
by implementing a complex analysis of cache misses, a running thread could
spy and determine where some highly relevant information by another running
thread are located (as an example, kryptographic private keys). A possible so-
lution for this vulnerability could be given by disabling the HT working on the
BIOS setup. This reaction will unlikely happen in most current production envi-
ronments, hence it is predictable that many future server farms, and simulation
clusters, will be composed by more and more HT-enabled processors.

To the best of our knowledge, the influence of HT technology on PADS archi-
tectures and frameworks has not been investigated in detail. Thanks to simple
heuristics, HT-enabled OSes should be able to adapt the process scheduling to
the HT architecture, with the intent of optimizing the overall execution of pro-
cesses.

On the application side, it is quite common for parallel and distributed sim-
ulation frameworks to allocate a single LP for each available processor. This is
based on the assumption that one single LP will be the only running process
and would not cause context switches and other relevant overheads. On the other
hand, each time the LP is blocked due to communication and synchronization
delays, the CPU time would be wasted [14]. The effects of HT technology could
significantly change the assumptions related to current implementation choices.
Under the software architecture viewpoint, most of the modern PADS middle-
wares are based on multi-threaded implementation, and basically should take
adavantage of the HT support. It would be interesting to evaluate if the increas-
ing in the number of logical processes could be exploited as a new dimension for
PADS optimization: to concurrently run more LPs than the number of physical
processors, under HT processor architectures.

5.1 The experimental testbed

To give answers to the above questions about HT technology and PADS assump-
tions, we evaluated the performances of the real ARTIS simulation framework
on a real experimental testbed, instead of relying on syntetic CPU benchmarks.

First, we defined a scalable model of a complex and dynamic system, whose
definition contains many of the worst model assumptions that has been identified
as stressing conditions under the PADS framework optimization and simulation
execution performances viewpoints: the wireless mobile ad hoc network model.
The model is composed by a high number of simulated wireless mobile hosts
(SMHs), each one following a Random Mobility Motion model (RMM) with a
maximum speed of 10 m/s. This mobility model is far from being real, but it is
characterized by the completely unpredictable and uncorrelated mobility pattern
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of SMHs. The system area is modeled as a torus-shaped bi-dimensional grid-
topology, 10.000x10.000 space units. The torus area, indeed unrealistic, allows
to simulate a closed system, populated by a constant number of SMHs. The torus
space assumption is commonly used by modelers to prevent non-uniform SMHs
concentration in any sub-area. The simulated space is flat and open, without
obstacles. The modeled communication pattern between SMHs is a constant flow
of ping messages (i.e. constant bit rate), transmitted by every SMH in broadcast
to all neighbors within a wireless communication range of 250 spaceunits.

5.2 The experimental results

All the experiments and the analysis results shown in this paper are based on
the parallel and distributed simulation of the wireless ad hoc model, under the
control, optimization and management of the ARTIS runtime (Section 4). We
performed multiple runs for each experiment, and the confidence intervals ob-
tained with a 95% confidence level (not shown in the figures) are lower than 5%
the average value of the performance index.

The experiments collected in this section have been executed over a PEU
equipped by Dual Xeon Pentium IV 2800 Mhz, 3 GB RAM. The experiments
have been divided in two groups: the first group is based on Hyper-Threading
support enabled for the PEU (HT-ON), and the second one is based on Hyper-
Threading support disabled directly by BIOS settings (HT-OFF).

The ARTIS implementation adopted in this analysis is itself multi-threaded,
and takes advantage of the multi-threading support to manage the execution of
LPs: each LP is composed by at least 3 threads (main, shared memory and net-
work management). The standard ARTIS implementation implements a timed
wait synchronization mechanism between the threads that compose each LP. Al-
ternative solutions for implementing communication between the threads could
be based on busy waiting, or signalling-based implementations.

Figure 1 shows the wall-clock time (WCT) required to complete one simu-
lation run, taken as a reference. The reference run is defined as the evolution
of 1000 time-steps of simulated time for the wireless ad hoc model with 6000
wireless SMHs. The X coordinate (LPs) shows the number of concurrent LPs
implementing the set of model entities for the reference scenario. When LP = 1,
the simulation is strictly sequential and monolithic, that is, only one processor
executes the single LP incarnating the execution of all the model entities of the
simulated model. In the LP = 2 scenario, 2 LPs incarnate the set of model enti-
ties, and each LP is allocated on a different physical processor of the execution
architecture. When LP = [3..8] the ARTIS framework introduces a load-sharing
of model entities over LPs. In addition, ARTIS supports communication layer
adaptation, resulting in low latency communication between LPs.

Thanks to load-sharing capability of ARTiS, the time required for complet-
ing the simulation run (Wall Clock Time, WCT) for LP = 2 is better than the
one obtained with one LP (LP = 1). When the number of LPs grows, this fact
introduces overheads under the synchronization and data distribution manage-
ment (DDM) viewpoints, while the concurrency at the CPU hardware level is
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Fig. 1. PEU=1, SMH=6000, ARTIS Multithread (Timed Wait) implementation, Wall
Clock Time with Hyper-Threading ON and OFF
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Fig. 2. PEU=1, SMH=6000, ARTIS Multithread (Signal Based) implementation, Wall
Clock Time with Hyper-Threading ON and OFF
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Fig. 3. PEU=1, SMH=6000, ARTIS Monothread implementation, Wall Clock Time
with Hyper-Threading ON and OFF

stable. For this reason, the WCT increases when LP > 2 and shows additional
overheads with HT-ON.

On the other hand, results in Figure 1 show that the HT-enabled PEU (HT-
ON) for LP = 2 gives slightly better resuls than the HT-disabled PEU (HT-
OFF). For this experimental scenario, the minimum WCT for both HT-ON and
HT-OFF curves is obtained for 2 LPs. The activation of HT does not change
the optimal number of LPs, but has effects on the overall performance of the
simulation processes.

The reason for additional overheads with HT-ON could be due to the timed
wait implementation of the thread synchronization implemented by ARTIS. For
this reason, in the following Figure 2, we performed the same investigation shown
in Figure 1, with a modified version of ARTIS. The latter version of ARTIS is
still multi-threaded, but the synchronization among threads is implemented with
a signal based approach.

In Figure 2 results show that the HT-enabled PEU (HT-ON) performs always
better than the HT-disabled (HT-OFF) version. In addition, the HT-ON scenario
shows an increase in the simulation scalability, with respect to HT-OFF.

In Figure 3 the HT support is evaluated with respect to a mono-threaded
version of the ARTIS runtime architecture. This means that the ARTIS run-
time is based on single-thread, which is responsibile to manage all the model
entities’ executions and to manage the communications. This test is interesting
to evaluate the behavior and performances of HT architectures when executing
mono-threaded software. Figure 3 shows that the HT support may slow down
single threaded applications, by resulting in additional overhead. A quite strange
behavior appears when LP = 4, showing a simulation slowdown (found also in
Figure 2). The reason for this behavior requires further investigation.
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To summarize, in ARTIS the HT support gives better results with signal
based synchronization among threads, with respect to timed wait synchorniza-
tion. On the other hand, HT support does not change the optimal number of
LPs with respect to the underlying PEU architecture. When the LPs are mono-
threaded, the HT support appears as not influent up to a given number of LPs
(up to 4 LPs in the figures), and as an overhead when more than 4 LPs are
executed (that is, when the model entities are load-shared among more than 4
LPs) in the considered PEU architecture.

6 Communication optimization: data marshalling

The communication efficiency is one of the main factors determining the effi-
ciency of a parallel or distributed simulation. As discussed in previous sections,
the communication overhead determined by the need to share the event messages
information and synchronization of distributed model entities could become the
main bottleneck for the PADS efficiency and scalability. For these reasons, the
second field of analysis we focused on for possible optimization is the distributed
communication support. In ARTIS, many design optimizations have been applied
to obtain adequate protocols for synchronization and communication over gen-
eral communication architectures ranging from Internet to Local Area Networks
(LAN) or Shared Memory (SHM). In our vision the communication and synchro-
nization middleware should be adaptive and user-transparent when adopting all
the optimization techniques required to improve communication and synchro-
nization performances. The current optimization scheme in ARTIS is based on
a straightforward incremental policy: given a set of LPs on the same physical
host (that is, with shared memory), such processes always communicate and
synchronize via read and write operations performed within the address space
of LPs, in the shared memory. To implement these services we have designed,
implemented and tested many different solutions and techniques, based on Inter
Process Communication (IPC), semaphores and locks, busy-waiting, and “wait
on signals” with a limited set of temporized spin-locks. The latter solution has
demonstrated very low latency and limited CPU overhead, good performances
obtained in multi-CPU systems, good scalability, and no need to reconfigure
the operating system kernel level. Two or more LPs located on different hosts
(i.e. no shared memory available) on the same local area network (or even on
the Internet) would rely on standard TCP/IP connections. Ongoing activity is
completing the implementation of Reliable-UDP/IP stack for pushing the per-
formances over highly reliable and fast LAN technologies.

The performance degradation of PADS, that is, the increasing WCT required
to complete the simulations, is really sensitive to the communication latency. In
ARTIS, every interaction between LPs for synchronizing and distributing event
messages is immediately performed over shared memory or network infrastruc-
tures. This kind of implementation generates much more transmissions on the
communication channel, and replicates the message overheads (headers and trail-
ers) and the channel accesses. A reduction of the overheads and channel accesses
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could result in increased channel utilization and reduction of the communication
bottlenecks.

In the following we will investigate if and how a message marshalling approach
could reduce the simulation WCT. The data marshalling approach consists in
the concatenation of more than one logical message in the same communication
messages. In order to control the inverse trade-off degradation in the average
communication latency, the data marshalling process is controlled by a timer:
once every a maximum time limit the messages buffered on the LP are sent in a
data marshalling packet (or frame). The proposed optimization has been applied
both to shared memory and TCP/IP communications.

Figure 4 shows the results for the optimization applied to a distributed sim-
ulation architecture. The hardware architecture is composed by 2 homogeneus
PEUs equipped by Dual Xeon Pentium IV 2800 Mhz, 3 GB RAM, with HT-
enabled, interconnected by a Gigabit Ethernet (1 Gb/sec). The simulated model
for tests is the wireless ad hoc network model described in the previous section.
Different scenarios have been modeled by varying the number of simulated en-
tities (SHMs) in the model: from 3000 up to 9000 simulated mobile hosts. For
each experiment, the data shown include the WCT time obtained with data
marshalling ON and OFF, respectively. The data marshalling applied to this
simulation testbed increased the WCT simulation performances: 48% for 3000
SMHs, 30% for 6000 SMHs, and 18% for 9000 SMHs (see Figure 4). When the
number of SMHs increases, the percentage gain reduces: this happens because
the computation required for updating and managing the states of many more
SMHs becomes the predominant simulation bottleneck in this system (in the
place of communication bottleneck).

Marshalling ON vs Marshalling OFF
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Fig. 4. PEU=2, Wall Clock Time with Marshalling ON and OFF
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Impact of MTU size on Marshalling
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Fig. 5. PEU=2, SMH=6000, Wall Clock Time with Marshalling ON and OFF

The Maximum Transmission Unit (MTU) of local area network communi-
cations is another factor that could be managed under the data marshalling
viewpoint. The Ethernet standard frame size has been “de facto” limited to
1500 bytes. In recent years the Ethernet bitrate has greately increased, but the
MTU size is substantially the same. Very large MTU size could reduce com-
munication overheads (i.e. the percentage effect of headers) and could increase
the network utilization. This approach is usually referred to as the adoption of
“jumbo frames”. The adoption of jumbo frames could result in compatibility
problems with networking hardware not fully compliant with this new feature.
On the other hand, on many local systems (that is, LANs) the adoption of jumbo
frames could be homogeneously supported. For this test we have interconnected
two homogeneous PEUs (defined above) by a cross-linked Gigabit Ethernet net-
work cable. The simulation model is the wireless ad hoc model with 6000 SMHs.
In Figure 5 results show that the data marshalling ON can reduce the WCT with
respect to data marshalling OFF. On the other hand, results are only slightly
influenced by the variation of the MTU size (from 1000 up to 9000 Bytes). The
experiments shown that the adoption of jumbo frames slightly increased perfor-
mances (up to 3000 Bytes) when data marshalling is OFF. When marshalling
is ON, the simulation performance was almost constant up to 3000 bytes, and
slightly increasing with more than 3000 Bytes.

7 Simulation data structures optimization

One of the most important data structures in a computer simulation is the repos-
itory of event descriptors. Both monolithic and distributed simulations, require
that future events are collected and executed in timestamp order. Every sim-
ulation may include the management of millions of events. For this reason, it
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is important to find a really efficient data structure at least in the support of
a subset of management operations. The most frequent operations in a simu-
lation process are: insertion of a new event descriptor (insert() operation), and
extraction of the event with the minimum time stamp (extract_min() operation).
Both operations should have a really low computational complexity and should
be easy to implement. Some useful data structures can be adopted to assist in
the implementation of the event repository definition and management: lists,
hash tables, calendars and balanced trees. In most cases, the better solution is
to adopt the heap data structure.

“A heap is a specialized tree-based data structure. Let A and B be nodes of
a heap, such that B is a child of A. The heap must then satisfy the following
condition (heap property): key(A) < key(B). This is the only restriction of
general heaps. It implies that the greatest (or the smallest, depending on the
semantics of a comparison) element is always in the root node. Due to this fact,
heaps are used to implement priority queues” [3].

/ \
/ \ / \

Fig. 6. A classical heap (Base Heap, BH) data structure

Given a binary heap, the worst case computational complexity for the in-
sert_heap() and extract_min_heap() is O(logzan) (because after the extraction the
heap requires a heap re-organization (heapify) algorithm execution). We call a
classical binary heap as the “base heap” data structure (see Figure 6). The Base
Heap (BH) demonstrates good performances in general, to implement the event
repository for a simulation process. On the other hand, by considering common
assumptions related to the event management and event characteristics in the
simulation field, we could design even more efficient heap-based data structures.
Event descriptors are usually organized as heap elements ordered by time-stamp
(key). The set of events generated during a conservative simulation is usually
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characterized by sequential time-stamp values. Moreover, the time management
of a simulation process could be time-stepped, which means that all the time-
stamps of events located in the same timestep are equal. By exploiting these
common properties of simulation processes it would be possibile to implement
an enhanced version of the heap data structure. Each node of the Enhanced Heap
(EH) is now composed by a pointer to a linked list of events, including all the
descriptors of events with the same time-stamp value (see Figure 7). Thanks to
the principle of time-locality in the references to event descriptors in a simulation
process, the access to event descriptor with time-stamp value ¢ is followed with
high probability by the accesses to event descriptors with the same time-stamp
value. For this reason, by caching the pointer to the linked list of simultaneous
events in the simulation, the management of the EH data structure is much more
efficient than replicating search operations on the BH. This optimization allows
to avoid frequent heapify operations, by working on the cached linked lists as-
sociated with heap elements. Hence, by calling a hit the insertion or extraction
of one event descriptor to/from the cached list associated to current simulated
time ¢, the insert_heap() and extract_min_heap() operations can be performed
in the majority of cases with O(1) complexity (given the time-locality simula-
tion assumption, resulting in high hit ratio) in the linked list. The complexity is
O(log(k)) in the worst case (that is, cache miss), being k the number of different
event timestamps (keys) inserted in the EH. In general, with EHs, the number
of three nodes can be reduced, by adopting only one placeholder node for the
set of events with the same timestamp (key). The data structure size can be re-
duced by eliminating the time-stamp informations from all the event descriptors
in the same list (whose time-stamp is implicitely defined by the corresponding
EH node).
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Fig. 7. An Enhanced Heap (EH) data structure

The Figure 8 shows the results obtained by a benchmark application (that
is, not a simulation) that has been defined to test the efficiency of the EH data
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structure managament. The curves show the average time required to insert
(and to extract) a group of 1000 heap nodes in base (BH) and enhanced (EH)
heap data structures, when the initial heap size has the value indicated on the
X coordinate. Two kinds of heap insertion operations have been tested: the
Burst insertion is defined as the insertion of a group of 1000 heap nodes with
the same key (time-stamp value), while the Linear insertion is defined as the
insertion of a linear sequence of 1000 heap nodes with incremental key (time-
stamp value). The data shows that the management of BH with burts insertions
(Base Burst curve in the figure) obtains the worst performance, as expected.
The BH with linear insertions (Base Linear curve in the figure) performs a little
better than Base Burst. A great improvement in the performance is obtained
with the Enhanced Heap (EH). The EH with linear insertions (Enhanced Linear
curve in the figure) performs better than Base Burst (50% time reduction). The
EH with burts insertions (Enhanced Burst curve in the figure) obtains almost
constant performances, independent from the heap size, and results in a very
good performance index.

HEAP Extract-Min Benchmark (Base vs Enhanced)

B‘&Burs‘
26-06 | Baseliner— — |

Enhanced Linear

Enhanced Burst — —

1.5e-06

Time (s)

1e-06

5e-07

Heap Size

Fig. 8. Benchmarks: synthetic environment, base vs. enhanced versions

By testing the Enhanced Heap data structure on the simulation testbed, we
performed the simulation of the wireless ad hoc simulation model with variable
number of SMHs over the multi-threaded version of the ARTIS framework. The
experiments have been executed over a PEU equipped by Dual Xeon Pentium
IV 2800 Mhz, 3 GB RAM, with Hyper-Threading support activated.

The Figure 9 shows the impact of the Heap type (Base vs. Enhanced) on
the WCT performance for the simulations, with variable number of simulated
entities (SMHs). As expected the WCT increases, but the effect of the Heap
type is marginal. Only a little advantage is shown with 6000 SMHs. The reason
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Impact of HEAP Enhancement on
Performance
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Fig. 9. Standard wireless model (computation intensive), performance evaluation of
base data structure vs. enhanced

Impact of HEAP Enhancement on
Performance

600 -

B /
o
E 400
=
~ ]
X 300
o
O 200
= /
= 100
0 = . . . . . . !
2000 3000 4000 5000 6000 7000 8000 9000 10000
SMHs
=+=BASE ==-ENHANCED

Fig. 10. Modified wireless model (low computation), performance evaluation of base
data structure vs. enhanced



20 Luciano Bononi et al.

for this fact is the high degree of computation that is required in this model for
managing each event involving a subset of SMHs. Without entering in details,
this simulation model is defined in order to be computation intensive. For this
reason the advantages in the management of event descriptors obtained with
Enhanced Heaps is hidden by the overwhelming amount of computation that
follows every new event extraction or insertion. To confirm this fact, we imple-
mented a light computation version of the same simulation model, where the
computation caused by each event is reduced more or less of a factor 10.

The results shown in Figure 10 confirms our expectations. In this figure, the
advantage of adopting the Enhanced Heap is clear. The increase in the model
complexity (number of simulated mobile hosts, SMHs) results in the increasing
advantage of adopting the Enhanced Heap support for event management. The
low computation required in this model, for each event, has emphasized the effect
of the event management complexity in the simulation process evolution.

8 Conclusions and future work

In this paper we illustrated the definition and analysis of a collection of solutions
adopted to increase the performance of communication and computation activ-
ities required by the implementation and execution of parallel and distributed
simulation processes. A preliminary analysis of modeling and simulation issues
has been given to illustrate a set of background assumptions, and the resources’
and performance bottlenecks emerging for a computer simulation of complex,
massive and dynamic models. Parallel and distributed simulation has been de-
fined, and a real testbed simulation scenario has been illustrated, based on the
ARTIS parallel and distributed simulation framework. Three classes of solutions
have been proposed to improve the performance of simulations executed over
commodity off-the-shelf computation and communication architectures: multi-
threaded software and Hyper-Threading support by the processor architectures,
data marshalling solutions for shared-memory and network-based communica-
tions, and data structure optimization for simulation events’ management. All
the proposed solutions have been evaluated on real testbed evaluation scenarios,
and under variable configurations. Results obtained demonstrate that a perfor-
mance improvement, summarized by the Wall Clock Time (WCT) required to
complete the simulation processes, can be obtained by adopting and tuning the
proposed solutions in opportune way. The experimental analysis has provided
some interesting guidelines about the way to adopt and to compose the proposed
solutions, under the considered simulation testbed. Some guidelines indicate that
the system bottleneck could change depending on the model and system assump-
tions. Most of the guidelines have been commented under the general context
assumptions, and could be considered generally extensible to other simulation
frameworks, models and execution scenarios.

Future works include the analysis of more wide simulation scenarios, and
the detailed analysis of resource utilization metrics. This work is finalized to
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the implementation of authomatic and user-transparent optimization methods
in background of the ARTIS parallel and distributed simulation framework.
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