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Distributed Simulation of

Large Scale and Detailed Models
Gabriele D’Angelo, Michele Bracuto

Abstract

In this paper, we present a new approach for the distributed simulation oflarge scale and detailed models.

Our approach, based on the migration of simulated entities, enhances the simulator speed jointly addressing two

main problems of distributed simulation: the reduction of the communication overhead and the load-balancing in the

distributed execution architecture. The proposed method dynamically reconfigures the simulation, taking care of the

performance of each part of the execution architecture and dealing withthe unpredictable fluctuations of the available

computation power and the communication load of each execution unit. In thisway, low-cost commercial-off-the-shelf

hardware can be used to run fast and cost-effective distributed simulations. A fine-grained model of the 802.11 DCF

protocol has been used for the performance evaluation of the proposed approach. The results demonstrate that it is

feasible for the detailed simulation of very large scale models such as wireless networks.

Index Terms

simulation; distributed simulation; load balancing; wireless networks.

I. I NTRODUCTION

A simulation is a system that represents or emulates the behaviour of another system over time [Fujimoto 2000].

Nowadays, the simulation technique is of primary importance in the design, implementation and performance

evaluation of many real world systems. The systems of interest are often very large, as number of entities, and

characterised by very fine-grained models. In detail, many of them are composed of many entities or parts, and

characterised by a very dynamic nature and progress. In designing simulations, one key factor is the level of detail

of the simulated model. That is the complexity of the representation of real world entities and interactions, within

the simulation. The importance of the level of detail is twofold: first of all, the correctness of the simulation

results is deeply influenced by the amount of details involved in the representation of the simulated system

[Perrone et al. 2003]. In a performance evaluation, an inadequate amount of details in the model representation

can lead to misleading or wrong results [Cavin et al. 2002]. On the other side, the level of detail affects the time

required to run the simulation [Hedidemann et al. 2001]. An increased amount of details translates to many factors:
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more computation is required to evolve the simulation, morememory is used to represent the modeled system and

an increased amount of communication among the simulated entities is necessary.

The common approach to simulators implementation is based on monolithic design, that is a single execution

unit manages the evolution of the whole simulation. In the scenario described above this approach often gives

unsatisfactory results. Firstly, a single execution unit is unable to provide the scalability required for the simulation

of large-scale models. A lot of memory is necessary to represent the state of a large number of entities, moreover

the evolution of such kind of system is characterised by manyinteractions that have to be generated, delivered and

stored. Secondarily, the time required to run such large andcomplex models is often excessive. Frequently, the

amount of time available to obtain the simulation results isvery limited, and in some cases faster-than-real-time

responses are required [Hybinette et al. 2001].

An alternative approach is based on Parallel And Distributed Simulation (PADS) [Fujimoto 2000], in this case

a set of execution units is in charge of the execution of the simulation. Each execution unit is responsible for a

part of the simulation (a subset of the entities that composethe simulated system) and their interactions. To obtain

a correct execution of the distributed simulation, all the execution units have to be synchronised during the entire

span of the simulation. The main advantage of the PADS approach is the aggregation of memory and computational

resources: an execution architecture composed of many Physical Execution Units (PEU) is potentially able to model

very large systems. Furthermore, thanks to the parallel execution of some parts of the model, a speed-up can be

obtained. Two main issues of this approach are: i) the amountof synchronisation and communication required for

a correct execution and ii) the computation and communication load-balancing in the PADS architecture.

The cost of communication in distributed systems is orders of magnitude higher than in centralised. To minimise

this cost, PADS are often executed on parallel execution architectures (e.g. symmetric multiprocessing, SMP). In

fact, the SMP-based communication is characterised by verylow latency and high throughput, with respect to LAN

or Internet-based distributed systems. On the other hand, SMPs are composed of two or more identical processors

connected to a single shared main memory. Therefore, due to their memory constraints, also SMPs are unable to

represent very large scale models. Moreover, mainly due to cost reasons, multiprocessors are not widespread.

A more cost-effective solution is based on distributed execution architectures composed of Commercial off-

the-shelf (COTS) hardware. For example, networked personal computers can be used to build low cost execution

architectures (e.g. desktop PCs, university computing labs, etc.). The performance of this approach is affected

by many factors: i) the level of detail of simulated models and in general the amount of computation required

for the simulation execution; ii) the cost of the LAN or Internet-based communication; iii) the load-balancing of

communication and computation in the distributed architecture. In particular, the execution of detailed models in a

distributed architecture requires very frequent synchronisation phases, and this can lead to high communication cost

and consequently low execution speed [Hyunok et al. 2007]. To increase the simulator performance, the goal is to

reduce at the bare minimum the amount of network based communication and to maintain a good level of load-

balancing. In this work we propose a new approach for the detailed (fine-grained) simulation of large scale models.

Our approach, that is based on the migration of simulated entities, jointly addresses the two problems described
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above: the reduction of the communication overhead and the load-balancing in the distributed architecture. It is

worth noting that, in our vision, both aspects are related tothe same problem and therefore a combined approach

is necessary.

The paper structure is the following: in Section II some background concepts are introduced, in Section III

is described the related work about communication cost reduction and load-balancing in parallel and distributed

simulation. In Section IV the approach based on entities migration is discussed, and in Section V we consider a

real-world case study based on the performance evaluation of a wireless networks simulator. Finally, Section VI

reports our conclusions and future work.

II. BACKGROUND

A distributed simulation can be designed as a set of Simulated Model Entities (SME), in which each SME models

a small part of the real system (e.g. a mobile wireless device). The interactions between entities in the real system

are modeled as interactions between SMEs. A Logical Process(LP) can be seen as a component of the distributed

simulation and the container of one or more SMEs. Each LP is allocated on a Physical Execution Unit (PEU)

that provides the computational and communication resources to the LP (See Figure 1). Depending on the PEU

performance and the simulator design, the same PEU can allocate one or more LPs. Following this approach the

simulator is built as a distributed system: each LP manages the evolution of a part of the simulation. To obtain

correct results from the simulation, all LPs have to be carefully coordinated: the evolution of the simulated model

depends on the execution of a synchronisation mechanism. Many synchronisation algorithms have been proposed,

following different approaches: conservative and optimistic [Misra 1986], [Jefferson 1985]. In the following of our

proposal, we assume a simple synchronisation mechanism based on the conservative time-stepped evolution of the

simulated time [Fujimoto 2000]. In detail, the distributedsimulator does not advance to the next time-step until

all simulation activities associated with the current time-step have been completed. Since many communication

protocols are based on time slots, the time-stepped approach often facilitates the design and implementation of the

related models [Bononi et al. 2008], [Liu et al. 2007].

Fig. 1. A distributed simulation composed of 2 LP.
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III. R ELATED WORK

The reduction of the communication cost and the load-balancing are main fields of PADS research. Focusing on

the partitioning of simulation models, many different approaches have been proposed to maintain a globalshared-

state in distributed simulation, while dynamically filtering the event- and state-information to reduce the com-

munication overhead. Some examples are static partitioning schemes [Fabbri et al. 2000], spheres of influence

[Logan et al. 2001], simulation domains [Szymanski et al. 2002], data distribution management [IEEE 1516 Standard 2000],

[Raczy et al. 2005], dynamically adaptive partitionions [Kumova 2005] and hierarchical federations [Cai et al. 2001].

Many works have addressed the problem of load-balancing in parallel simulation environments. For example,

[Som et al. 2000] propose an approach based on strong groups.Following their definition, a strong group is a

collection of model component that strongly affect each other’s progress. With respect to our proposal this approach

is based on an optimistic synchronisation scheme (i.e. TimeWarp, [Jefferson 1985]), implements a much less fine-

grained definition of the simulated model and does not directly take care of reducing the communication overhead.

An alternative approach is followed by [Deelman et al. 1998]. In this case the two-dimensional simulated space

is discretized into a lattice, which is then partitioned anddistributed among the different parts of the distributed

execution architecture. In [Boukerche et al. 1997], a load balancing scheme for conservative parallel simulations

is presented. In this case, the dynamic load balancing algorithm is based upon a process migration mechanism. In

[Gan et al. 2000] is presented a load balancing scheme for parallel discrete event simulation that combines both

static partitioning and dynamic load balancing. Finally, in [Shanaker et al. 2001] is considered the case of distributed

simulation based on conservative approach. In this case, the problem is reduced to an instance of the Task-Allocation

Problem (TPA) found in distributed systems. A dynamic reallocation strategy based on LP-reallocation is developed

and some experiments based on an Hypercube architecture indicate significant improvements.

Only a few works have examined the problem of simulation model partitioning considering both communication

cost and load-balancing requirements in distributed simulation environments. In [Peschlow et al. 2007] is proposed

a dynamic partitioning algorithm for optimistic distributed simulation. Our proposal, and the one described in

[Peschlow et al. 2007] are both based on the migration of parts of the simulated model, to cope with computation

and communication imbalances. Although both approaches have the same goals, the proposed mechanisms are

quite different. First of all, the mechanisms are aimed for diverse synchronisation algorithms. Furthermore, they

are both based on a migration-based approach but coping withdifferent granularity of the migrated objects (LP

in the case of [Peschlow et al. 2007] and single simulated entities in our case). Most importantly, the mechanism

proposed in [Peschlow et al. 2007] is based on the calculation, in each host, of performance estimates for both

local computation and communication workload. The measurements are collected by a global dynamic partitioning

instance (DynPart) that reacts to imbalances instructing migrations. Instead, we propose a distributed mechanism

that uses the information provided by the synchronisation algorithm to detect and react to the imbalances.
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IV. A DAPTIVE DISTRIBUTED SIMULATION

A fast distributed simulator should be able to use a large number of PEUs, to reduce the synchronisation

and communication cost to the bare minimum and to load-balance the cluster of PEUs. Given the dynamic and

unpredictable nature of the distributed simulation environment (e.g. variable network load and latency, presence of

background CPU load, etc.) it is not possible to use off-lineanalytic evaluation to find the best configuration of the

simulation with respect to the above described requirements. For example, the partitioning of the simulation model

deeply affects the computational and communication load ofeach PEU. Moreover, the heterogeneity of PEUs and

the dynamic load of the execution environment further complicate the search for a good configuration. Given that,

in this case, every form of static partitioning is inadequate: a dynamic and adaptive approach is required.

We aim to design a tool that automatically reconfigures the distributed simulator, adapting the model partitioning

and the execution architecture to the runtime requirements. In our opinion, the details about entities allocation

and execution platform should be totally transparent to thesimulator’s user. Given that, the starting point is the

design and implementation of mechanisms for the reduction of the communication overhead and the load-balancing

management in the distributed architecture. It is worth noting that both can be seen as different aspects of the

same problem and therefore a joint approach is necessary. For example, under the communication viewpoint, the

maximum reduction of the synchronisation and communication overhead would be obtained clustering all SMEs in

the same PEU. Obviously, this solution is the worst case for load-balancing.

The proposed approach, described in the following of this section, can be seen as based on two parts with

different goals: i) the communication overhead-reductionmechanism, and ii) the load-balancing mechanism, both

implemented in the distributed simulation middleware and supervising the simulator execution.

A. Communication overhead reduction

Following the approach based on simulated entities described in Section II, a simulation can be seen as a set

of interacting SMEs. Each entity will model the evolution ofa very small part of the system and will interact

with other entities using messages. In detail, SMEs that areallocated on the same LP will be able to interact

via low latency and low overhead networks (e.g. shared memory), that is intra-LP communication. Conversely,

SMEs that are allocated on different LPs (i.e. extra-LP communication) will experience the cost of LAN-based

communications. To reduce the communication cost and therefore enhance the simulation execution, we propose to

adaptively reallocate the SMEs over the available LPs (and therefore PEUs). Our proposal is to audit communication

pattern of each SME during the simulation execution and to evaluate if reallocations of SMEs are necessary. In this

way, the highly interacting SMEs can be migrated to the same LP. Clustering together the communication-related

SMEs is possible to reduce the costly inter-LP communication and conversely increase the rate of low cost intra-LP

communication. In this case, the role of the dynamic reallocation is to reduce the communication overhead. In detail,

the migration can be implemented as the transfer of data structures (i.e. the internal state of simulated entities). The

cost of migrating the simulated entities is not negligible and has to be considered. As said before, this mechanism

is composed of two main heuristics: i) the “base heuristic” and ii) the “group heuristic”.
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1) Base and group heuristics:The base heuristic analyses the communication pattern of each SME and determines

if it should be migrated. At the end of each simulation time-step, during the synchronisation phase, it is analysed the

communication pattern of all SMEs that have sent at least oneinteraction. A SME that has much of its interactions

delivered to SMEs that are outside its “local” LP (that is extra-LP communication) is a good candidate for migration.

The destination of the migration is the LP that amounts of thelarger percentage of outbound interactions. In detail,

let a taggedSME(j) be executed on the i-th LP. Let us defineRj e = Me/Mi as the ratio of theMe “external”

interactions sent to the e-th LP, with respect to the number (Mi) of “local” interactions sent within the local (i-th)

LP. The resulting ratioRj e is evaluated for every foreign e-th LP. If the maximum ratio obtained is greater than

a global threshold-valueK (“migration factor”, default valueK = 3), then the corresponding LP is chosen as

the candidate destination for theSME(j) migration in the next time-step. No migration is performed,otherwise

[Bononi et al. 2004b]. This scheme is integrated in a sliding-windows mechanism that introduces a weighting

method. The weight of each interaction depends on its aging and payload size. To obtain good results, the heuristic

needs to have up-to-date data as input. Interactions that are too old should not be included in the data set, since

they are related to a simulated model state that could be verydifferent from the current one. At the same time,

focusing only on the interactions delivered in the current state, drastically reduces the possibility to perform trend

analysis and could lead to underreaction or overreaction inthe adaptive mechanism. For example, in the simulation

of mobile wireless networks, mainly due to mobility factorsin the simulated model, interactions (e.g. the events

modeling the wireless transmissions) older than a specific threshold have to be discarded or underweighted. A

simple way, to implement the weighting mechanism, is to discard all interactions older than a threshold-value

IH (called “interaction-horizon”, default valueIH = 3 sec. of simulated time) and to weight the interactions in

inverse proportion to their distance from current simulated time. In presence of interactions with different payload

size, it is applied a correction factor that is proportionalto the size, with respect to the average of interactions.

Tuning parameters and migration timeouts are introduced tostabilise the system. For example, a fast moving SME

would change very frequently its interaction pattern and therefore introduce a high number of worthless migrations.

The migration factor (K) introduced above, can be modified bythe simulation modeller, and has the role to tune

the amount of migrations in the system. In some sense, it controls the adaptivity of the distributed simulation.

Furthermore, a migration timeout has been introduced to control the number and the timing of migrations of each

SME. After each migration, the timer of the migrated SME is set to a predefined value (default = 10), each

interaction that is sent by the SME has the effect to decrement the counter, and a new migration can be performed

only when the counter gets to zero.

The results of the basic heuristic are analysed and modified by the group heuristic. In this case, the goal is to

find and evaluate the groups of SMEs that are candidate for migration. Single SMEs that are not candidate could be

migrated due to the migration of all SMEs that are interacting with them. In these terms, the group heuristic tries to

achieve a higher level of abstraction with respect to the base one. Let us define “interaction group” a set of SMEs

that are interacting. For example, some wireless devices inthe same location. The implementation of the group

heuristic, first of all, tries to determine the interaction groups in the migrating SMEs. For each interaction group
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that is found, the heuristic analyses the communication pattern of each SME that is in the group. It determines if

other SMEs (that are local to the LP) should be migrated, withthe aim to maintain the clustering of the whole

group in the same LP.

The approach introduced above, which has been partially described in [Bononi et al. 2003], [Bononi et al. 2004b],

in many practical cases has led to a significant reduction of the communication costs and a speed-up, both in parallel

and distributed simulation [Bononi et al. 2004a]. It is worth noting that, the implemented heuristics could be further

refined, and the default threshold values could be tuned case-by-case (depending mainly on the simulated model

characteristics) or a further auto-adaptation mechanism could be added. Conversely, our goal is to demonstrate

that very simple and quite generic heuristics, based on reasonable tuning parameters, are sufficient to enhance the

distributed simulation execution.

B. Load-balancing

The load-balancing mechanism is based on the migration of simulated entities and the presence of synchronisation

barriers during the simulation execution. In presence of a time-stepped synchronisation mechanism, each time-step

is, in fact, a synchronisation barrier. On the other hand, ifsynchronisation is based on the Chandy-Misra-Bryant

[Misra 1986] algorithm, specific synchronisation points can be introduced. The proposed mechanism requires very

few assumptions from the execution architecture and can also correct imbalances that are unrelated to the evolution

of the simulation (e.g. unpredictable fluctuations of the available computation power and network load).

1) Mechanism design and implementation:As said before, the proposed mechanism relies on the instrumentation

of the synchronisation algorithm implemented in the distributed simulation middleware. It is automatically triggered

at every predetermined time interval (the default value is 50 simulated time-steps), this interval can be tuned depend-

ing on the characteristic of the simulated model and the execution architecture. Focusing on the synchronisation, a

time-stepped simulation can be seen as a series of consecutive synchronisation points, in which each LP is allowed

to move from time-stepn to n + 1 if and only if all LPs have completed the computation and communication

tasks related to time-stepn. A major drawback of this synchronisation scheme is that theexecution speed of the

distributed simulation is limited by the speed of the slowest component (i.e. “slowest LP problem”). It is worth

noting that LP slowness may be due to two main factors: i) the PEU (that allocates the LP) is overloaded; ii) the

communication network (used by the LP) has a higher delay with respect to other components of the distributed

system. The underlying reasons are very different, but are indistinguishable from outside the LP: the LP is detected

as slow. In both cases the reaction should be exactly the same: slow LPs have to migrate some of their locally

allocated SMEs to faster LPs. In case i) this action would reduce the computational load; in case ii) the higher

delay introduced by the network is balanced by a reduction inlocal computation. The resulting effect is that the

LP will be able to complete the next time-steps in less time, likely reaching the synchronisation points with good

timing. In extreme cases, very slow LPs are automatically excluded from the simulator. In this way, the proposed

mechanism can reduce the synchronisation cost due to useless LPs.

More in detail, the implementation of the load-balancing mechanism is based on a distributed scheme. Each LP
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in the simulation: i) collects the useful data from the synchronisation algorithm (i.e. the execution speed of other

LPs), ii) creates a local representation of the distributedsystem and iii) reacts in presence of imbalances. In phase

i), each LP compares its arrival to the synchronisation barriers with respect to all other LPs. Using this information,

in phase ii), each LP calculates a sort of rating that is basedon the execution speed of the LPs. The LPs that are on

top (default: top20% of the list) are tagged as “fast”, conversely the bottom LPs (default: bottom10%) are tagged

as “slow”. In phase iii), if the LP is marked as “slow” then it is enabled to migrate some local SMEs to the LPs

marked as “fast”. In practice, the load-balancing mechanism triggers additional migrations to improve the balancing

of the distributed system. Each LP tagged as “slow” has to determine: a) how many SMEs to migrate, b) the LP or

the LPs that should receive the migrating SMEs, and c) which are the SMEs that should be migrated. The number

of migrations, point a), is dynamically defined with respectto the size of the imbalance. Each LP calculates the

Wall-Clock-Time (WCT) required to complete the simulation of a single time-step (Local Execution Time, LET).

Again using the data obtained from the synchronisation algorithm, the LP calculates the Mean Execution Time

(MET) that is the mean WCT required from other LPs to simulate asingle time-step. Assuming that all the SMEs

allocated in a LP are homogeneous in terms of computation load, the number of SMEs to migrate is determined as

proportional to the size of the imbalance (i.e.LET −MET ), and with respect to the total amount of SMEs that are

allocated in the LP. In presence of SMEs with heterogeneous computational load, the quantification of the SMEs to

migrate is more complex but still possible. In this case, themechanism has to audit, step-by-step, the execution of

the LP and needs to determine the amount of CPU used by each SMEthat is locally allocated. With this information

available, the problem reduces to a variant of the well-known 0-1 knapsack problem that is solved using dynamic

programming. Focusing on point b), many approaches can be used to choose the LPs that should accommodate

the migrating SMEs. Choosing, as recipient, a random LP in the “fast group” could introduce severe fluctuations

in the distributed system, particularly in execution architectures composed of few LPs. Our choice is to uniformly

distribute the migrating SMEs among all LPs in the group. Finally, the identification of which SMEs should be

migrated, point c), is done in accordance with the SMEs migrations triggered by the mechanism that reduces the

communication overhead (Section IV-A1) and again with the goal of clustering in the same LP the highly interacting

simulated entities. It is worth noting that, in many simulated models, a bad choice of migration candidates could

negatively affect the communication overhead. Again, thisevaluation is done inspecting the communication pattern

of SMEs but, in this case, other factors (e.g. computationalrequirements and internal state size of each SME), have

to be considered.

2) Properties of the mechanism:The described mechanism has some interesting characteristics: a) the load-

balancing is dynamic and adaptive; b) computation and communication aspects are both considered; c) the mecha-

nism can be tuned: it can be triggered every time-step or delayed, to control and reduce the introduced overhead; d)

the execution architecture, that is the set of PEUs involvedin the distributed simulation, can be very heterogeneous in

terms of computational and communication resources. In this case, the load-balancing mechanism will automatically

find the adequate level of load for each PEU, depending on its runtime performance; e) the background computation

and communication load (e.g. tasks that are unrelated to thesimulation execution) can interfere with the simulation
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execution, but the load-balancing mechanism will trigger re-allocations to improve the partitioning; f) the “slowest

LP problem” described above is partially solved: the execution speed of the distributed simulator is still limited by

the slowest LP, but now the system is able to correct imbalances due to internal or external factors. The adequate

number of SME to be allocated in each PEU is dynamically determined, depending on runtime conditions and

performance of the PEU hardware. A PEU that is overloaded dueto tasks that are unrelated to the simulation can

be excluded from the simulation, so that the simulator will not starve waiting for synchronisations. Some details about

a preliminary version of the proposed mechanism can be foundin [Bononi et al. 2006]. It is worth noting that the

heuristics composing the adaptive mechanism have to be rather simple and very efficiently implemented. Otherwise,

in presence of models composed of a large number of simulatedentities (see Section V-D), the computational cost

of the heuristics would slow down the simulator.

V. CASE STUDY: WIRELESS NETWORKS

Wireless networks are often composed of a very large number of nodes and, under the simulation viewpoint,

with strict requirements in terms of level of detail [Hedidemann et al. 2001]. Given the growth rate of wireless

technologies, networks composed of hundreds of thousands up to millions of nodes will be widely diffused in the

next years. Therefore, we need tools suitable for the detailed simulation of very large scale wireless networks.

Medium Access Control (MAC) protocols commonly used in wireless networks, require very fine-grained models

to represent the state of the shared medium and the behaviourof wireless devices. Under the distributed simulation

viewpoint, this translates to very frequent synchronisations and a large amount of communication between PEUs

[Hyunok et al. 2007]. This problem is so critical that many simulation tools are still based on the monolithic

approach and therefore unable to simulate very large wireless networks without relying on approximation or

aggregation techniques [Perrone et al. 2003], [Guo et al. 2000].

The main goal of this case study is to demonstrate that large scale wireless network (200.000 nodes) can be

efficiently simulated following the PADS approach when specifically tailored techniques are used to improve the

communication efficiency. Moreover, implementing appropriate load-balancing schemes it is possible to exploit

massively distributed execution architectures composed of Commercial Off-The-Shelf (COTS) hardware for the

simulation of very large-scale wireless networks (1.000.000 nodes). Networked personal computers can be used to

build low cost execution architectures that are much more cost-effective than dedicated High Performance Computing

(HPC) architectures. The proposed approach permits to share computing facilities with other users (e.g. desktop

PCs, university computing labs, etc.) without having to reserve the computational resources for a single task.

Figure 2 illustrates the stack-based architecture of the wireless network simulator used in the following per-

formance evaluation (Section V-D): on top WiFra models the wireless network (Section V-C). The middle layer

is represented by the GAIA+ framework that provides functionalities to reduce the communication overhead and

to adaptively manage load-balancing in distributed simulation (Section V-B). The core of the simulator is the

Advanced RTI System (ART̀IS) middleware (Section V-A), whose main goal is to provide an efficient and easy to

use environment for parallel and distributed simulation.
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Fig. 2. Logical architecture of the distributed simulator.

A. The Advanced RTI System (ARTÌS)

The Advanced RTI System (ARTÌS) is a middleware for parallel and distributed simulation[ARTÌS Homepage 2008],

specifically designed to support high degree of model scalability and execution architectures composed of a

large number of PEUs. The design of the middleware is partially influenced by the High Level Architecture

[IEEE 1516 Standard 2000]. The implementation has been usedas a testbed for the design and development of

new features such as: simulation cloning and concurrent replication, communication marshalling, and the study

of specifically tailored data structures for the managementof simulation events. Some new features have been

introduced to improve scalability and simulator performance, and a simplified set of Application Programming

Interfaces (APIs) has been provided to facilitate the development of PADS. In a distributed simulation, a large part

of the interactions are delivered by network communications, therefore the execution speed is highly influenced by

the communication performance (e.g. network latency and bandwidth). Consequently, it is of primary importance to

consider the characteristics of the physical allocation ofLPs and to adaptively adjust the communication behaviour

with respect to network performance. For example, LPs on symmetric multiprocessing (SMP) or multi-core systems

should communicate via shared memory. On the other side, LPsconnected by LAN, WAN or Internet should

rely on the most appropriate communication protocols (e.g.Reliable-UDP, SCTP, TCP, etc.). As seen before,

synchronisation is a main issue in PADS, therefore the simulation middleware has to provide time management

services to the simulation components composing the distributed simulation. For the sake of generality, ARTÌS

supports both conservative (Chandy-Misra-Bryant, time-stepped) [Misra 1986], [Fujimoto 2000] and optimistic

(Time Warp) [Jefferson 1985] synchronisation algorithms.The middleware is freely available for research purposes

and can be downloaded from the [ARTÌS Homepage 2008].

B. Generic Adaptive Interaction Architecture (GAIA+)

The Generic Adaptive Interaction Architecture (GAIA+) [Bononi et al. 2003], [Bononi et al. 2004a], [Bononi et al. 2006]

is a migration based framework that uses the services provided by the ART̀IS middleware. GAIA+ implements the

overhead reduction and load-balancing mechanisms described in Sections IV-A and IV-B. The framework provides
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to the simulation developer an easy-to-use entity based paradigm for the definition of models. Following this

approach, the level of abstraction provided to the developer is relatively high. In this sense, the ARTÌS middleware

is completely transparent to the developer. GAIA+ providesto the simulation model the communication services

and the support for entity migration. In this case too, the details about load-balancing and communication cost

reduction are transparent. Some parameters for the tuning of advanced and specific features can be tuned at runtime

by the model developer (e.g. the migration timeout described in Section IV-A). The GAIA+ framework has been

used for the implementation of many simulation models such as: wireless ad hoc networks, sensor networks, scale-

free networks and agent-based cooperative multi-agent systems. In the following section, it will be described the

implementation of a detailed wireless model based on the services provided by the framework.

C. Wireless framework (WiFra)

The Wireless Framework (WiFra) is a new library composed of models and auxiliary functions, specifically

designed and implemented to simplify the simulation-basedperformance evaluation of large scale wireless networks.

WiFra provides a detailed model (fine-grained) of the MAC 802.11 DCF protocol that has been used for the

performance evaluation described in Section V-D. The modelhas been implemented in C language for performance

reasons and has been designed to comply with the GAIA+ migration-based programming paradigm. Details about

the testbed configuration and the experimental evaluation will be described in Section V-D1. It is worth noting

that, in this case, we are not interested in the evaluation ofthe specific MAC protocol or other aspects strictly

related to the wireless model. The scope of this case study isto evaluate the performance and scalability of the

proposed approach in a real-world setting. In Section I we have seen that the level of detail of the simulated model

deeply affects the execution speed. For this reason, a fine-grained MAC 802.11 DCF model has been implemented,

providing a realistic testbed for the simulation of large-scale wireless networks. Some parameters imposed by the

protocol are an interesting challenge for distributed simulation. For example, the simulation time-step is imposed

by the smallest time parameter defined in the 802.11 DCF protocol that is the Short Interframe Space (SIFS) (10

µs). Under the distributed simulation viewpoint this translates to extremely frequent synchronisations and therefore

a very high communication overhead [Hyunok et al. 2007].

D. Experimental evaluation

In the following, the WiFra simulator will be evaluated in presence of different configurations and execution

architectures. First of all, in Section V-D1 will be described the testbed used in the performance evaluation. In

Section V-D2 will be shown the scalability results obtainedby the simulator while disabling the GAIA+ framework

(i.e. disabling the overhead reduction and load balancing mechanisms). In Section V-D3 the GAIA+ framework

will be turned ON and the impact of the proposed mechanisms onthe simulator performance will be evaluated.

Finally, in Section V-D4 we will demonstrate that followingthe proposed approach it is possible to build detailed

simulations of very large scale wireless networks, using a large cluster of PEUs.

March 12, 2009 DRAFT



D
R

A
FT

TO APPEAR, INTERNATIONAL JOURNAL OF SIMULATION AND PROCESS MODELLING (IJSPM), DRAFT VERSION 12

1) Testbed environment:This section illustrates the main aspects of the testbed model used in the following

performance evaluation. We assumed a scenario populated bya high number of mobile wireless devices, referred

as Simulated Mobile Hosts (SMHs). In the simulator, each SMHhas been implemented as a single SME, therefore

under the simulation viewpoint each communication betweenSMHs will be translated to a set of interactions

between SMEs. Each SMHs follows a Random WayPoint mobility model (RWP) [Bettstetter et al. 2002], this

mobility model is far from being real, but it is a good choice to evaluate the GAIA+ mechanism: the uncorrelated

mobility pattern of SMHs is not favourable for the clustering mechanisms described in Section IV-A. Furthermore,

during the initialisation phase the SMHs are randomly allocated on the available LPs. Space is modeled as a

torus-shaped 2-D flat topology without obstacles, space size depends on the number of SMHs, to have a constant

density of SMHs in different tests. On top of the 802.11 DCF protocol we implemented a very simple info-mobility

application, the modeled communication between SMHs is a constant flow of fixed size messages (i.e. constant bit

rate), transmitted by every SMH to all neighbours within a wireless communication range of 250 meters. Additional

details can be found in Table 1. It is worth noting that more complex propagation, mobility and application models

would have increased the amount of computation required to complete the simulation runs, without significantly

increasing the synchronisation overhead. In this case the distributed approach would be highly favoured with respect

to the monolithic.

Table 1: wireless model parameters

Simulation time-step 10 µs (802.11 SIFS)

MAC layer IEEE 802.11 DCF

Packet size 1024 bytes

Packet rate 4 pkt/s

Propagation model Free space propagation

Transmission range 250 meters

Simulated area Variable size

fixed density of nodes

Nominal channel bit rate 2 Mbps

Mobility model Random WayPoint (RWP)

Simulated devices (SMHs) 200.000, 1.000.000

2) WiFra scalability: First of all, it has been evaluated the scalability of the distributed simulator in the standard

configuration, that is without any mechanism to improve the communication and the computation load balancing

(i.e. GAIA+ OFF).

In Figure 3, it is shown the scalability of the simulator in a distributed execution environment composed of a

variable number of desktop PCs (from 1 up to 8) each one equipped by Dual Core Intel Pentium IV CPU 3.0

GHz with 1 GB of RAM and interconnected by Fast Ethernet network (100 Mbit/s). In reference to the previous

definition, each PC is a PEU and, in this case, allocates a single LP. The simulation efficiency was measured in
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Fig. 3. Speed-up obtained by the WiFra framework. LPs = 1, 2, 4,8. Simulated scenario with 200.000 SMHs.

terms of speed-up, that is the rate of execution times between monolithic execution and distributed one. In this

scenario, the simulated time was set to 3 seconds and the simulated area was populated by 200.000 SMHs. In

Figure 3 is shown a good scalability withLP = 2 (i.e. the simulation was executed on 2 different PEUs) with

a speed-up value (1.77) that is near the theoretical maximum(that is 2). With 4 LPs we have a further speed-up

increase but the result is quite far from the theoretical maximum (that in this case is 4). Finally, the distributed

simulation composed of 8 LPs is still faster than monolithic(LP = 1) but shows a speed-up (1.97) lower than with

LP = 4.

These results are in line with our expectations, for many reasons. As described in previous sections, the perfor-

mance of a distributed simulator can be seen as a trade-off between computation and communication costs. The

distributed architecture has a communication cost that should be balanced by the gain of the parallel execution.

If the communication cost is lower than the gain we are in presence of a speed-up of the distributed execution

(LP = 2, 4, 8) with respect to monolithic (LP = 1). Conversely, if the communication cost is higher than the

gain we have a slow-down. The model used in this performance evaluation is highly populated but dominated by

communications (i.e. the synchronisation requirements imposed by the 802.11 DCF protocol). In this case each

simulated device has very little computational tasks. The total amount of computation required to complete each

step of the simulation is sufficient to overload 2 PEUs but insufficient in the case of 4 and 8. In this case, adding

more PEUs to the execution architecture increases the communication overhead without any computational gain. A

real world scenario characterised by complex user-level applications on top of the wireless protocol would require

a higher amount of computation and therefore would benefit ofa larger number of PEUs.

A further reason for the speed-up result withLP = 8 is due to the “slowest LP problem” described in Section

IV-B. The cluster of PEUs is homogeneous in terms of hardware(e.g. CPU model and RAM) but with some

differences in terms of real performances. Without a load-balancing mechanism (in this case GAIA+ is OFF)

a small difference in the background load of each PEU or in thenetwork, leads to a slow-down of the whole
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simulation. Furthermore, increasing the number of PEUs consequently increases the heterogeneity of the execution

architecture.

In accordance with our aim to use COTS computing resources, the performance evaluation was conducted

overnight, using a cluster of desktop PCs with the same hardware characteristics but with possible small differences

in the installed software and running tasks. The results of many independent runs were collected and carefully

scrutinised: we present the mean values.

Fig. 4. Speed-up obtained by the WiFra framework with GAIA+ OFF / ON. LPs = 1, 2, 4, 8. Simulated scenario with 200.000 SMHs.

3) Performance of the GAIA+ framework:The same scenario described in Section V-D2 was simulated enabling

the GAIA+ framework. In Figure 4 is shown that withLP = 1 (that is a monolithic simulation) GAIA+ is obviously

unable to provide a speed-up. However, it is interesting that it does not introduce any significant overhead. With

LP = 2 andLP = 4, GAIA+ provides a small increase in the speed-up (up to 5.7%). The small gain in terms of

performances shows that the communication in the simulatedmodel is mainly due to synchronisations. As described

in Section IV-A, GAIA+ clusters the highly interacting SMHsto reduce the communication overhead but is unable

to reduce the synchronisation overhead due to the synchronisation mechanism. In the simulated model, the amount

of communication that is related to the model semantic is quite small: the communication ratio of each device is 4

pkt/s with respect to a synchronisation time-step of 10µs (see Table 1). Also in this case, a realistic model with a

higher amount of communication related to the model would increase the gain obtained by the GAIA+ framework.

With LP = 8, GAIA+ has a performance gain of 16.2%, in this case the load-balancing mechanism reacts to

the heterogeneity of the execution architecture. Dynamically adjusting the number of SMHs allocated in each LP,

GAIA+ obtains a more uniform system, in terms of execution speed.

4) Distributed simulation of very large-scale wireless networks: The last part of this performance evaluation is

about the detailed simulation of a very large-scale wireless network, composed of 1.000.000 of nodes. The execution

architecture was a cluster of 32 PEUs, Dual Core Intel Pentium IV CPU 3 GHz with 1 GB RAM also in this case

interconnected by Fast Ethernet. The distributed simulation was composed of 32 LPs, one for each PEU. Initially
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each PEU allocated31.250 SMHs (that is 1.000.000 / 32). During the simulation the load-balancing mechanism

has triggered re-allocations to adapt the load of each PEU tothe performance of the hardware and background load

(e.g. other users’ tasks, batch tasks of the operating system, etc.).

Fig. 5. Distributed simulation of 1.000.000 of SMHs (32 PEUs). Allocated SMHs on each PEUs, final allocation.

Fig. 6. Distributed simulation of 1.000.000 of SMHs (32 PEUs). Allocated SMHs on each PEUs, differences from initial allocation.

In Figure 5 is shown the final allocation of SMHs for each PEU, the difference from the initial allocation is

relevant (see Figure 6). It is worth noting that the effective performance of some PEUs is quite different from the

expected performances. PEUs 11, 21, 22 and 32 have a final allocation of less than25.000 SMHs, with a difference

of more than6.000 units with respect to the initial allocation. Another groupof PEUs (4, 15, 17 and 18) have a

limited reduction in the number of allocated SMHs. The remaining PEUs have increased the number of SMHs to

compensate the reductions in other PEUs. In this last group,the increase is quite uniform across all PEUs.

Under the performance viewpoint, the detailed simulation of wireless networks composed of million of nodes

is not feasible following the monolithic approach. A singleexecution units is unable to represent so large models
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Fig. 7. Wall-Clock-Time for the simulation of 1.000.000 of SMHs (over 32 PEUs). Each step in the X-axis equals to 200 time-steps of

simulated time.

without severe performance degradation. In Figure 7, we have compared the WCT for the simulation of the scenario

described above, with and without the GAIA+ framework (thatis GAIA+ ON and OFF). For readability, each step

in the graph is obtained by the aggregation of 200 time-stepsof simulated time. The results confirm that GAIA+

provides a limited but valuable gain in the time required to complete the simulation. After the warm-up phase,

the mechanism is able to speed-up the execution and to provide a gain in terms of performance (up to 21%).

The gain is limited but quite stable for the rest of the simulation. For the reasons described in Sections V-D2 and

V-D3, this result is very promising. The simulation of more complex and realistic user level-applications would

further increase the gain obtained by the GAIA+ framework. Furthermore, execution architectures composed of

very heterogeneous PEUs would sharply increase the gain obtained by the GAIA+ framework with respect to a

static allocation of SMEs. The warm-up phase is necessary for the GAIA+ heuristics to collect information about

the simulated model and to tune the parameters of the migration-based mechanism. As described in Section IV-B,

the presence of a very large number of simulated entities is akey issue in the design and implementation of the

heuristics. In the considered scenario, the amount of simulated entities is so high that a badly designed heuristic

would be very expensive in terms of computation time and memory requirements.

5) Evaluation of the proposed mechanisms:As stated in Section I, in our vision, the reduction of the com-

munication overhead and the load-balancing are different aspects of the same problem. Therefore our proposed

solution is a combined approach that is based on two main mechanisms (i.e. communication overhead reduction

and load-balancing management), each one implemented using a set of heuristics. In previous sections, we have

shown the experimental evaluation of our proposal in presence of different scenarios and execution environments.

The estimate of the contribution of each mechanism to the performance results is a rather complex task due to the

many variables and the influencing factors that should be taken in account to obtain an unbiased evaluation.

The performance of the communication overhead reduction mechanism (Section IV-A) is highly influenced by
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the characteristics of the simulated model. For example, the amount of communication required by the simulation

model with respect to computation. In presence of a CPU-intensive model, the gain obtained by the reduction of the

communication overhead is negligible with respect to the computation time. On the other hand, it is worth noting

that this part of GAIA+ can reduce the communication cost of the interaction among simulated entities but is unable

to reduce the communication cost due to the synchronisationof the distributed architecture. Therefore, in presence

of simulation models with very frequent synchronisation barriers, the positive effect of the mechanism could be

highly reduced. For these reasons, the wireless model introduced in Section V-D1 results as highly unfavourable

for the evaluation of the communication overhead reductionmechanism. In previous works [Bononi et al. 2004a],

[Bononi et al. 2004b], we demonstrated that, in presence of less extreme scenarios, the proposed approach leads to

significant speed-up of parallel and distributed simulations. Finally, in presence of imbalances in the hosts running

the simulation, the load-balancing mechanism (Section IV-B) is the main responsible of the speed-up obtained by

GAIA+. This is due to the characteristics of the conservative synchronisation algorithm used in the simulation. The

presence of synchronisation barriers requires that each LPhas to reach the barrier. Therefore, even a single LP that

is slow in reaching the barriers is a huge bottleneck for all others that are idle while waiting for synchronisation.

VI. CONCLUSIONS AND FUTURE WORK

In this work we have proposed a new approach, based on the migration of simulated entities, to increase the per-

formance of distributed simulations. In our vision, two major problems of distributed simulation, the communication

overhead reduction and the load-balancing, have to be seen as different aspects of the same problem. Consequently,

a joint approach is strictly necessary.

Our solution, based on specifically tailored heuristics, reallocates the simulated entities clustering the highly

interacting components of the simulation and reacting to computation and communication imbalances. A fine-

grained model of a wireless protocol has been used for the performance evaluation of the proposed approach.

The results demonstrate that distributed simulation is a feasible approach for the simulation of large scale models.

Furthermore, big clusters of desktop PCs can be used for the detailed simulation of very large-scale wireless

networks, composed of 1.000.000 of nodes.

As a future work we plan to further increase the adaptivity ofthe proposed mechanism: the distributed simulation

architecture should dynamically adapt the number of execution units with respect to the runtime requirements. For

example, the framework should be able to detect if the execution architecture is overloaded, and therefore activate

more PEUs. Conversely, if the execution architecture is underloaded then it should shrink the number of PEUs,

to reduce communication and synchronisation costs. We envision a mechanism that automatically reconfigures

the simulation, monolithic or distributed and vice versa, depending on the runtime requirements and the dynamic

characteristics of the execution architecture. Followingthis approach, the usability of simulation tools would be

greatly improved, fostering a wider adoption of the distributed simulation techniques.
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