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Distributed Simulation of

Large Scale and Detailed Models

Gabriele D'Angelo, Michele Bracuto

Abstract

In this paper, we present a new approach for the distributed simulatidargé scale and detailed models.
Our approach, based on the migration of simulated entities, enhancegnihiatsr speed jointly addressing two
main problems of distributed simulation: the reduction of the communicatierhead and the load-balancing in the
distributed execution architecture. The proposed method dynamicabiyfigares the simulation, taking care of the
performance of each part of the execution architecture and dealingheithnpredictable fluctuations of the available
computation power and the communication load of each execution unit. lwdyidow-cost commercial-off-the-shelf
hardware can be used to run fast and cost-effective distributed siomgdaA fine-grained model of the 802.11 DCF
protocol has been used for the performance evaluation of the pd@Eproach. The results demonstrate that it is
feasible for the detailed simulation of very large scale models such as sgre&tworks.
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I. INTRODUCTION

A simulation is a system that represents or emulates thevimhiaof another system over time [Fujimoto 2000].
Nowadays, the simulation technique is of primary imporeame the design, implementation and performance
evaluation of many real world systems. The systems of iatesiee often very large, as number of entities, and
characterised by very fine-grained models. In detail, manthem are composed of many entities or parts, and
characterised by a very dynamic nature and progress. Igragi simulations, one key factor is the level of detalil
of the simulated model. That is the complexity of the repnéstgon of real world entities and interactions, within
the simulation. The importance of the level of detail is taldf first of all, the correctness of the simulation
results is deeply influenced by the amount of details inwbl#@ the representation of the simulated system
[Perrone et al. 2003]. In a performance evaluation, an igaae amount of details in the model representation
can lead to misleading or wrong results [Cavin et al. 2002].tte other side, the level of detail affects the time

required to run the simulation [Hedidemann et al. 2001]. Acréased amount of details translates to many factors:
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more computation is required to evolve the simulation, mmoeenory is used to represent the modeled system and
an increased amount of communication among the simulatttiesris necessary.

The common approach to simulators implementation is baserhanolithic design, that is a single execution
unit manages the evolution of the whole simulation. In thenseio described above this approach often gives
unsatisfactory results. Firstly, a single execution usitimable to provide the scalability required for the simatat
of large-scale models. A lot of memory is necessary to remtethe state of a large number of entities, moreover
the evolution of such kind of system is characterised by matgractions that have to be generated, delivered and
stored. Secondarily, the time required to run such large amdplex models is often excessive. Frequently, the
amount of time available to obtain the simulation resultsasy limited, and in some cases faster-than-real-time
responses are required [Hybinette et al. 2001].

An alternative approach is based on Parallel And Distrifh#émulation (PADS) [Fujimoto 2000], in this case
a set of execution units is in charge of the execution of theukition. Each execution unit is responsible for a
part of the simulation (a subset of the entities that complbesesimulated system) and their interactions. To obtain
a correct execution of the distributed simulation, all txecaition units have to be synchronised during the entire
span of the simulation. The main advantage of the PADS apprzathe aggregation of memory and computational
resources: an execution architecture composed of manydah¥xecution Units (PEU) is potentially able to model
very large systems. Furthermore, thanks to the paralletugian of some parts of the model, a speed-up can be
obtained. Two main issues of this approach are: i) the amousynchronisation and communication required for
a correct execution and ii) the computation and commuminatiad-balancing in the PADS architecture.

The cost of communication in distributed systems is ordérsagnitude higher than in centralised. To minimise
this cost, PADS are often executed on parallel executiohi@atures (e.g. symmetric multiprocessing, SMP). In
fact, the SMP-based communication is characterised by legryatency and high throughput, with respect to LAN
or Internet-based distributed systems. On the other had®sSare composed of two or more identical processors
connected to a single shared main memory. Therefore, dugeto hemory constraints, also SMPs are unable to
represent very large scale models. Moreover, mainly du®$b reasons, multiprocessors are not widespread.

A more cost-effective solution is based on distributed akea architectures composed of Commercial off-
the-shelf (COTS) hardware. For example, networked petsmraputers can be used to build low cost execution
architectures (e.g. desktop PCs, university computing,la@ic.). The performance of this approach is affected
by many factors: i) the level of detail of simulated modelsl an general the amount of computation required
for the simulation execution; ii) the cost of the LAN or Imet-based communication; iii) the load-balancing of
communication and computation in the distributed architer In particular, the execution of detailed models in a
distributed architecture requires very frequent syncisation phases, and this can lead to high communication cost
and consequently low execution speed [Hyunok et al. 2007 n@rease the simulator performance, the goal is to
reduce at the bare minimum the amount of network based coimeation and to maintain a good level of load-
balancing. In this work we propose a new approach for thellddtéfine-grained) simulation of large scale models.

Our approach, that is based on the migration of simulatetientjointly addresses the two problems described
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above: the reduction of the communication overhead anddhd-balancing in the distributed architecture. It is
worth noting that, in our vision, both aspects are relatetheosame problem and therefore a combined approach
iS necessary.

The paper structure is the following: in Section 1l some fmokind concepts are introduced, in Section IlI
is described the related work about communication costatémiu and load-balancing in parallel and distributed
simulation. In Section IV the approach based on entitiesraign is discussed, and in Section V we consider a
real-world case study based on the performance evaluafienvdreless networks simulator. Finally, Section VI

reports our conclusions and future work.

Il. BACKGROUND

A distributed simulation can be designed as a set of Simdilstedel Entities (SME), in which each SME models
a small part of the real system (e.g. a mobile wireless dgvidee interactions between entities in the real system
are modeled as interactions between SMEs. A Logical Pratégscan be seen as a component of the distributed
simulation and the container of one or more SMEs. Each LPlaxatied on a Physical Execution Unit (PEU)
that provides the computational and communication regsuto the LP (See Figure 1). Depending on the PEU
performance and the simulator design, the same PEU camatdlene or more LPs. Following this approach the
simulator is built as a distributed system: each LP manalgesevolution of a part of the simulation. To obtain
correct results from the simulation, all LPs have to be edietoordinated: the evolution of the simulated model
depends on the execution of a synchronisation mechanismy ynchronisation algorithms have been proposed,
following different approaches: conservative and optimifMisra 1986], [Jefferson 1985]. In the following of our
proposal, we assume a simple synchronisation mechanised lmssthe conservative time-stepped evolution of the
simulated time [Fujimoto 2000]. In detail, the distributetnulator does not advance to the next time-step until
all simulation activities associated with the current tistep have been completed. Since many communication
protocols are based on time slots, the time-stepped appaften facilitates the design and implementation of the
related models [Bononi et al. 2008], [Liu et al. 2007].

LP 1 LP 2

Distributed simulation @@ = @
Coves D Comea

Comes DComes )

D\stt[mrlted gxecuhon { PEU 1 PEU 2
architecture

Fig. 1. A distributed simulation composed of 2 LP.
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Ill. RELATED WORK

The reduction of the communication cost and the load-b@lgnare main fields of PADS research. Focusing on
the partitioning of simulation models, many different apgrhes have been proposed to maintain a globalshared-
state in distributed simulation, while dynamically filtegi the event- and state-information to reduce the com-

munication overhead. Some examples are static partitjosthemes [Fabbri et al. 2000], spheres of influence

[Logan et al. 2001], simulation domains [Szymanski et aDZ0data distribution management [IEEE 1516 Standard R000

[Raczy et al. 2005], dynamically adaptive partitionionsifkova 2005] and hierarchical federations [Cai et al. 2001].

Many works have addressed the problem of load-balancingamllel simulation environments. For example,
[Som et al. 2000] propose an approach based on strong gr&ofiewing their definition, a strong group is a
collection of model component that strongly affect eactedshprogress. With respect to our proposal this approach
is based on an optimistic synchronisation scheme (i.e. Wagp, [Jefferson 1985]), implements a much less fine-
grained definition of the simulated model and does not dirdéake care of reducing the communication overhead.
An alternative approach is followed by [Deelman et al. 1998]this case the two-dimensional simulated space
is discretized into a lattice, which is then partitioned afistributed among the different parts of the distributed
execution architecture. In [Boukerche et al. 1997], a loathicing scheme for conservative parallel simulations
is presented. In this case, the dynamic load balancing itigoiis based upon a process migration mechanism. In
[Gan et al. 2000] is presented a load balancing scheme fallpladiscrete event simulation that combines both
static partitioning and dynamic load balancing. Finaltyf$hanaker et al. 2001] is considered the case of distdbute
simulation based on conservative approach. In this casgrtfblem is reduced to an instance of the Task-Allocation
Problem (TPA) found in distributed systems. A dynamic @@dkion strategy based on LP-reallocation is developed
and some experiments based on an Hypercube architectucatmdignificant improvements.

Only a few works have examined the problem of simulation rhpdetitioning considering both communication
cost and load-balancing requirements in distributed satiart environments. In [Peschlow et al. 2007] is proposed
a dynamic partitioning algorithm for optimistic distritmtt simulation. Our proposal, and the one described in
[Peschlow et al. 2007] are both based on the migration ofpsHrthe simulated model, to cope with computation
and communication imbalances. Although both approachee t@ same goals, the proposed mechanisms are
quite different. First of all, the mechanisms are aimed foeide synchronisation algorithms. Furthermore, they
are both based on a migration-based approach but copingdifdrent granularity of the migrated objects (LP
in the case of [Peschlow et al. 2007] and single simulatediesin our case). Most importantly, the mechanism
proposed in [Peschlow et al. 2007] is based on the calculatio each host, of performance estimates for both
local computation and communication workload. The measargs are collected by a global dynamic partitioning
instance (DynPart) that reacts to imbalances instructiigrations. Instead, we propose a distributed mechanism

that uses the information provided by the synchronisatigorédhm to detect and react to the imbalances.
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IV. ADAPTIVE DISTRIBUTED SIMULATION

A fast distributed simulator should be able to use a large bmrof PEUSs, to reduce the synchronisation
and communication cost to the bare minimum and to load-baldahe cluster of PEUs. Given the dynamic and
unpredictable nature of the distributed simulation envinent (e.g. variable network load and latency, presence of
background CPU load, etc.) it is not possible to use off-inalytic evaluation to find the best configuration of the
simulation with respect to the above described requiresnéidr example, the partitioning of the simulation model
deeply affects the computational and communication loadach PEU. Moreover, the heterogeneity of PEUs and
the dynamic load of the execution environment further cacapd the search for a good configuration. Given that,
in this case, every form of static partitioning is inadeguat dynamic and adaptive approach is required.

We aim to design a tool that automatically reconfigures tis&ributed simulator, adapting the model partitioning
and the execution architecture to the runtime requiremdnt®ur opinion, the details about entities allocation
and execution platform should be totally transparent todineulator's user. Given that, the starting point is the
design and implementation of mechanisms for the reductidgheoxcommunication overhead and the load-balancing
management in the distributed architecture. It is worthingothat both can be seen as different aspects of the
same problem and therefore a joint approach is necessargexample, under the communication viewpoint, the
maximum reduction of the synchronisation and communicatieerhead would be obtained clustering all SMEs in
the same PEU. Obviously, this solution is the worst casedad4balancing.

The proposed approach, described in the following of thiti@e, can be seen as based on two parts with
different goals: i) the communication overhead-reductie@chanism, and ii) the load-balancing mechanism, both

implemented in the distributed simulation middleware aupesvising the simulator execution.

A. Communication overhead reduction

Following the approach based on simulated entities desitrib Section Il, a simulation can be seen as a set
of interacting SMEs. Each entity will model the evolution afvery small part of the system and will interact
with other entities using messages. In detail, SMEs thatadiozated on the same LP will be able to interact
via low latency and low overhead networks (e.g. shared mgmdhat is intra-LP communication. Conversely,
SMEs that are allocated on different LPs (i.e. extra-LP comigation) will experience the cost of LAN-based
communications. To reduce the communication cost and fidverenhance the simulation execution, we propose to
adaptively reallocate the SMEs over the available LPs (hacefore PEUS). Our proposal is to audit communication
pattern of each SME during the simulation execution and &duate if reallocations of SMEs are necessary. In this
way, the highly interacting SMEs can be migrated to the safeQlustering together the communication-related
SMEs is possible to reduce the costly inter-LP communioatiod conversely increase the rate of low cost intra-LP
communication. In this case, the role of the dynamic reatioa is to reduce the communication overhead. In detalil,
the migration can be implemented as the transfer of datatatas (i.e. the internal state of simulated entities). The
cost of migrating the simulated entities is not negligibiel das to be considered. As said before, this mechanism

is composed of two main heuristics: i) the “base heuristiad &) the “group heuristic”.
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1) Base and group heuristic§he base heuristic analyses the communication patterrcaf@®slE and determines
if it should be migrated. At the end of each simulation tinteps during the synchronisation phase, it is analysed the
communication pattern of all SMEs that have sent at leastimeeaction. A SME that has much of its interactions
delivered to SMEs that are outside its “local” LP (that isrextP communication) is a good candidate for migration.
The destination of the migration is the LP that amounts ofidéinger percentage of outbound interactions. In detail,
let a taggedSM E(j) be executed on the i-th LP. Let us defife . = M./M; as the ratio of thel/. “external”
interactions sent to the e-th LP, with respect to the numbg) Ef “local” interactions sent within the local (i-th)
LP. The resulting ratiaR; . is evaluated for every foreign e-th LP. If the maximum ratlitaoned is greater than
a global threshold-valud< (“migration factor”, default valueK = 3), then the corresponding LP is chosen as
the candidate destination for the)M F(j) migration in the next time-step. No migration is performetherwise
[Bononi et al. 2004b]. This scheme is integrated in a slidingdows mechanism that introduces a weighting
method. The weight of each interaction depends on its agidgpayload size. To obtain good results, the heuristic
needs to have up-to-date data as input. Interactions tkatoarold should not be included in the data set, since
they are related to a simulated model state that could be diffigrent from the current one. At the same time,
focusing only on the interactions delivered in the currdates drastically reduces the possibility to perform trend
analysis and could lead to underreaction or overreactidghdradaptive mechanism. For example, in the simulation
of mobile wireless networks, mainly due to mobility facténsthe simulated model, interactions (e.g. the events
modeling the wireless transmissions) older than a spedifieshold have to be discarded or underweighted. A
simple way, to implement the weighting mechanism, is to afidcall interactions older than a threshold-value
IH (called “interaction-horizon”, default valueH = 3 sec. of simulated time) and to weight the interactions in
inverse proportion to their distance from current simudaiene. In presence of interactions with different payload
size, it is applied a correction factor that is proportiot@lthe size, with respect to the average of interactions.
Tuning parameters and migration timeouts are introduceslabilise the system. For example, a fast moving SME
would change very frequently its interaction pattern aratdfore introduce a high number of worthless migrations.
The migration factor (K) introduced above, can be modifiedth®y simulation modeller, and has the role to tune
the amount of migrations in the system. In some sense, irasnthe adaptivity of the distributed simulation.
Furthermore, a migration timeout has been introduced tarabthe number and the timing of migrations of each
SME. After each migration, the timer of the migrated SME i$ s&®ea predefined value (default = 10), each
interaction that is sent by the SME has the effect to decrémfencounter, and a new migration can be performed
only when the counter gets to zero.

The results of the basic heuristic are analysed and modifjethdy group heuristic. In this case, the goal is to
find and evaluate the groups of SMEs that are candidate farativg. Single SMEs that are not candidate could be
migrated due to the migration of all SMEs that are interartiith them. In these terms, the group heuristic tries to
achieve a higher level of abstraction with respect to the lma®. Let us define “interaction group” a set of SMEs
that are interacting. For example, some wireless devicedbdnsame location. The implementation of the group

heuristic, first of all, tries to determine the interactiorogps in the migrating SMEs. For each interaction group
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that is found, the heuristic analyses the communicatiotepabf each SME that is in the group. It determines if
other SMEs (that are local to the LP) should be migrated, with aim to maintain the clustering of the whole
group in the same LP.

The approach introduced above, which has been partialtyritesl in [Bononi et al. 2003], [Bononi et al. 2004b],
in many practical cases has led to a significant reductiohetbommunication costs and a speed-up, both in parallel
and distributed simulation [Bononi et al. 2004a]. It is wonioting that, the implemented heuristics could be further
refined, and the default threshold values could be tunedlmasase (depending mainly on the simulated model
characteristics) or a further auto-adaptation mechanisoidcbe added. Conversely, our goal is to demonstrate
that very simple and quite generic heuristics, based oronednde tuning parameters, are sufficient to enhance the

distributed simulation execution.

B. Load-balancing

The load-balancing mechanism is based on the migratiomuflated entities and the presence of synchronisation
barriers during the simulation execution. In presence dma-stepped synchronisation mechanism, each time-step
is, in fact, a synchronisation barrier. On the other handyiichronisation is based on the Chandy-Misra-Bryant
[Misra 1986] algorithm, specific synchronisation points dg introduced. The proposed mechanism requires very
few assumptions from the execution architecture and cancagect imbalances that are unrelated to the evolution
of the simulation (e.g. unpredictable fluctuations of thailable computation power and network load).

1) Mechanism design and implementatigks said before, the proposed mechanism relies on the instriation
of the synchronisation algorithm implemented in the disttéd simulation middleware. It is automatically triggere
at every predetermined time interval (the default valueDisinulated time-steps), this interval can be tuned depend-
ing on the characteristic of the simulated model and the wgiat architecture. Focusing on the synchronisation, a
time-stepped simulation can be seen as a series of consesytichronisation points, in which each LP is allowed
to move from time-stepr to n + 1 if and only if all LPs have completed the computation and cemitation
tasks related to time-step. A major drawback of this synchronisation scheme is thatetkecution speed of the
distributed simulation is limited by the speed of the slowssmponent (i.e. “slowest LP problem”). It is worth
noting that LP slowness may be due to two main factors: i) the) Rthat allocates the LP) is overloaded; ii) the
communication network (used by the LP) has a higher delal vaspect to other components of the distributed
system. The underlying reasons are very different, butratistinguishable from outside the LP: the LP is detected
as slow. In both cases the reaction should be exactly the:sslove LPs have to migrate some of their locally
allocated SMEs to faster LPs. In case i) this action woulducedthe computational load; in case ii) the higher
delay introduced by the network is balanced by a reductioloéal computation. The resulting effect is that the
LP will be able to complete the next time-steps in less tirik@ly reaching the synchronisation points with good
timing. In extreme cases, very slow LPs are automaticaltfugled from the simulator. In this way, the proposed
mechanism can reduce the synchronisation cost due to siddhss

More in detail, the implementation of the load-balancingchemism is based on a distributed scheme. Each LP
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in the simulation: i) collects the useful data from the symodiisation algorithm (i.e. the execution speed of other
LPs), ii) creates a local representation of the distribiggstem and iii) reacts in presence of imbalances. In phase
i), each LP compares its arrival to the synchronisationi®armwith respect to all other LPs. Using this information,
in phase ii), each LP calculates a sort of rating that is basetthe execution speed of the LPs. The LPs that are on
top (default: top20% of the list) are tagged as “fast”, conversely the bottom LdRsgult: bottom10%) are tagged

as “slow”. In phase iii), if the LP is marked as “slow” then & énabled to migrate some local SMEs to the LPs
marked as “fast”. In practice, the load-balancing mechmartigggers additional migrations to improve the balancing
of the distributed system. Each LP tagged as “slow” has terdehe: a) how many SMEs to migrate, b) the LP or
the LPs that should receive the migrating SMEs, and c) whiehttee SMEs that should be migrated. The number
of migrations, point a), is dynamically defined with respexthe size of the imbalance. Each LP calculates the
Wall-Clock-Time (WCT) required to complete the simulatiohaosingle time-step (Local Execution Time, LET).
Again using the data obtained from the synchronisationralyan, the LP calculates the Mean Execution Time
(MET) that is the mean WCT required from other LPs to simulatngle time-step. Assuming that all the SMEs
allocated in a LP are homogeneous in terms of computatiah kb& number of SMEs to migrate is determined as
proportional to the size of the imbalance (ile'T — M ET'), and with respect to the total amount of SMEs that are
allocated in the LP. In presence of SMEs with heterogeneoaspatational load, the quantification of the SMEs to
migrate is more complex but still possible. In this case,rttechanism has to audit, step-by-step, the execution of
the LP and needs to determine the amount of CPU used by eacht!&¥is locally allocated. With this information
available, the problem reduces to a variant of the well-km@®al knapsack problem that is solved using dynamic
programming. Focusing on point b), many approaches can ée tesschoose the LPs that should accommodate
the migrating SMEs. Choosing, as recipient, a random LP én“fast group” could introduce severe fluctuations
in the distributed system, particularly in execution arettures composed of few LPs. Our choice is to uniformly
distribute the migrating SMEs among all LPs in the group.afyn the identification of which SMEs should be
migrated, point c), is done in accordance with the SMEs ntiigma triggered by the mechanism that reduces the
communication overhead (Section IV-Al) and again with thel@f clustering in the same LP the highly interacting
simulated entities. It is worth noting that, in many simathatmodels, a bad choice of migration candidates could
negatively affect the communication overhead. Again, évialuation is done inspecting the communication pattern
of SMEs but, in this case, other factors (e.g. computatioegliirements and internal state size of each SME), have
to be considered.

2) Properties of the mechanisnthe described mechanism has some interesting charaicteria) the load-
balancing is dynamic and adaptive; b) computation and comication aspects are both considered; c) the mecha-
nism can be tuned: it can be triggered every time-step oydd|ao control and reduce the introduced overhead; d)
the execution architecture, that is the set of PEUs invoindde distributed simulation, can be very heterogeneous in
terms of computational and communication resources. fdase, the load-balancing mechanism will automatically
find the adequate level of load for each PEU, depending omiitsme performance; e) the background computation

and communication load (e.g. tasks that are unrelated tsithelation execution) can interfere with the simulation
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execution, but the load-balancing mechanism will triggealocations to improve the partitioning; f) the “slowest
LP problem” described above is partially solved: the execuspeed of the distributed simulator is still limited by
the slowest LP, but now the system is able to correct imbakudeie to internal or external factors. The adequate
number of SME to be allocated in each PEU is dynamically da@tezd, depending on runtime conditions and
performance of the PEU hardware. A PEU that is overloadedtaltasks that are unrelated to the simulation can
be excluded from the simulation, so that the simulator vall starve waiting for synchronisations. Some details about
a preliminary version of the proposed mechanism can be fauifononi et al. 2006]. It is worth noting that the
heuristics composing the adaptive mechanism have to berrsitinple and very efficiently implemented. Otherwise,
in presence of models composed of a large number of simutattties (see Section V-D), the computational cost

of the heuristics would slow down the simulator.

V. CASE STUDY. WIRELESS NETWORKS

Wireless networks are often composed of a very large numbeodes and, under the simulation viewpoint,
with strict requirements in terms of level of detail [Hedwann et al. 2001]. Given the growth rate of wireless
technologies, networks composed of hundreds of thousgnds millions of nodes will be widely diffused in the
next years. Therefore, we need tools suitable for the @ekaimulation of very large scale wireless networks.

Medium Access Control (MAC) protocols commonly used in Wéss networks, require very fine-grained models
to represent the state of the shared medium and the behafiareless devices. Under the distributed simulation
viewpoint, this translates to very frequent synchron@iand a large amount of communication between PEUs
[Hyunok et al. 2007]. This problem is so critical that manynslation tools are still based on the monolithic
approach and therefore unable to simulate very large veseletworks without relying on approximation or
aggregation techniques [Perrone et al. 2003], [Guo et &0R0

The main goal of this case study is to demonstrate that lacgke svireless network (200.000 nodes) can be
efficiently simulated following the PADS approach when sfieally tailored techniques are used to improve the
communication efficiency. Moreover, implementing appiater load-balancing schemes it is possible to exploit
massively distributed execution architectures compode@ammercial Off-The-Shelf (COTS) hardware for the
simulation of very large-scale wireless networks (1.000.60des). Networked personal computers can be used to
build low cost execution architectures that are much mos¢-effective than dedicated High Performance Computing
(HPC) architectures. The proposed approach permits tee st@mputing facilities with other users (e.g. desktop
PCs, university computing labs, etc.) without having tceres the computational resources for a single task.

Figure 2 illustrates the stack-based architecture of threless network simulator used in the following per-
formance evaluation (Section V-D): on top WiFra models theel@ss network (Section V-C). The middle layer
is represented by the GAIA+ framework that provides furmidies to reduce the communication overhead and
to adaptively manage load-balancing in distributed sitmha(Section V-B). The core of the simulator is the
Advanced RTI System (ARTB) middleware (Section V-A), whose main goal is to provigeedficient and easy to

use environment for parallel and distributed simulation.
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Simulation model WiFra
Adaptive framework GAIA+
Runtime middleware ART]S
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Distributed execution
architecture

N T

Fig. 2. Logical architecture of the distributed simulator.

A. The Advanced RTI System (AS)T

The Advanced RTI System (AFE$) is a middleware for parallel and distributed simulalﬁARTiS Homepage 2008],
specifically designed to support high degree of model sdi#jalmnd execution architectures composed of a
large number of PEUs. The design of the middleware is pbrtiafluenced by the High Level Architecture
[[EEE 1516 Standard 2000]. The implementation has been ased testbed for the design and development of
new features such as: simulation cloning and concurrericetjpn, communication marshalling, and the study
of specifically tailored data structures for the managentérmgimulation events. Some new features have been
introduced to improve scalability and simulator perform@nand a simplified set of Application Programming
Interfaces (APIs) has been provided to facilitate the dgwalent of PADS. In a distributed simulation, a large part
of the interactions are delivered by network communicatjdherefore the execution speed is highly influenced by
the communication performance (e.g. network latency amdilwalth). Consequently, it is of primary importance to
consider the characteristics of the physical allocatiohRé and to adaptively adjust the communication behaviour
with respect to network performance. For example, LPs omsgtric multiprocessing (SMP) or multi-core systems
should communicate via shared memory. On the other side,cdoRsected by LAN, WAN or Internet should
rely on the most appropriate communication protocols (Reliable-UDP, SCTP, TCP, etc.). As seen before,
synchronisation is a main issue in PADS, therefore the sitimri middleware has to provide time management
services to the simulation components composing the biig&il simulation. For the sake of generality, ABT
supports both conservative (Chandy-Misra-Bryant, titegsed) [Misra 1986], [Fujimoto 2000] and optimistic
(Time Warp) [Jefferson 1985] synchronisation algorithifise middleware is freely available for research purposes

and can be downloaded from the [AiZSTHomepage 2008].

B. Generic Adaptive Interaction Architecture (GAIA+)

The Generic Adaptive Interaction Architecture (GAIA+) [Bani et al. 2003], [Bononi et al. 2004a], [Bononi et al. 2006]

is a migration based framework that uses the services prdviy the ARTS middleware. GAIA+ implements the

overhead reduction and load-balancing mechanisms desciibSections IV-A and IV-B. The framework provides
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to the simulation developer an easy-to-use entity baseddman for the definition of models. Following this
approach, the level of abstraction provided to the develapeelatively high. In this sense, the ART middleware

is completely transparent to the developer. GAIA+ proviteshe simulation model the communication services
and the support for entity migration. In this case too, theaitke about load-balancing and communication cost
reduction are transparent. Some parameters for the tumiagvanced and specific features can be tuned at runtime
by the model developer (e.g. the migration timeout desdribeSection IV-A). The GAIA+ framework has been
used for the implementation of many simulation models sichwireless ad hoc networks, sensor networks, scale-
free networks and agent-based cooperative multi-agemersgs In the following section, it will be described the

implementation of a detailed wireless model based on thaceer provided by the framework.

C. Wireless framework (WiFra)

The Wireless Framework (WiFra) is a new library composed oidels and auxiliary functions, specifically
designed and implemented to simplify the simulation-bgsefbrmance evaluation of large scale wireless networks.
WiFra provides a detailed model (fine-grained) of the MAC .802DCF protocol that has been used for the
performance evaluation described in Section V-D. The mbdslbeen implemented in C language for performance
reasons and has been designed to comply with the GAIA+ niigréiased programming paradigm. Details about
the testbed configuration and the experimental evaluatitinber described in Section V-D1. It is worth noting
that, in this case, we are not interested in the evaluatioth@fspecific MAC protocol or other aspects strictly
related to the wireless model. The scope of this case stutly évaluate the performance and scalability of the
proposed approach in a real-world setting. In Section | wesIs@en that the level of detail of the simulated model
deeply affects the execution speed. For this reason, a faieegl MAC 802.11 DCF model has been implemented,
providing a realistic testbed for the simulation of largale wireless networks. Some parameters imposed by the
protocol are an interesting challenge for distributed $ittion. For example, the simulation time-step is imposed
by the smallest time parameter defined in the 802.11 DCF gobthat is the Short Interframe Space (SIFS) (10
1s). Under the distributed simulation viewpoint this trates to extremely frequent synchronisations and therefore

a very high communication overhead [Hyunok et al. 2007].

D. Experimental evaluation

In the following, the WiFra simulator will be evaluated inegence of different configurations and execution
architectures. First of all, in Section V-D1 will be desetbthe testbed used in the performance evaluation. In
Section V-D2 will be shown the scalability results obtairgdthe simulator while disabling the GAIA+ framework
(i.e. disabling the overhead reduction and load balancieghanisms). In Section V-D3 the GAIA+ framework
will be turned ON and the impact of the proposed mechanismthersimulator performance will be evaluated.
Finally, in Section V-D4 we will demonstrate that followirte proposed approach it is possible to build detailed

simulations of very large scale wireless networks, usingrgd cluster of PEUSs.
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1) Testbed environmeni(This section illustrates the main aspects of the testbedeinaskd in the following
performance evaluation. We assumed a scenario populatedhiigh number of mobile wireless devices, referred
as Simulated Mobile Hosts (SMHSs). In the simulator, each Shéld been implemented as a single SME, therefore
under the simulation viewpoint each communication betw8&fHs will be translated to a set of interactions
between SMEs. Each SMHs follows a Random WayPoint mobiligdeh (RWP) [Bettstetter et al. 2002], this
mobility model is far from being real, but it is a good choicedvaluate the GAIA+ mechanism: the uncorrelated
mobility pattern of SMHs is not favourable for the clustgrimechanisms described in Section IV-A. Furthermore,
during the initialisation phase the SMHs are randomly a@ted on the available LPs. Space is modeled as a
torus-shaped 2-D flat topology without obstacles, space d&pends on the number of SMHs, to have a constant
density of SMHs in different tests. On top of the 802.11 DCétpcol we implemented a very simple info-mobility
application, the modeled communication between SMHs israstemt flow of fixed size messages (i.e. constant bit
rate), transmitted by every SMH to all neighbours within aekiss communication range of 250 meters. Additional
details can be found in Table 1. It is worth noting that moreptex propagation, mobility and application models
would have increased the amount of computation requirecbtoptete the simulation runs, without significantly
increasing the synchronisation overhead. In this caseithebdited approach would be highly favoured with respect

to the monolithic.

Table 1: wireless model parameters

Simulation time-step 10 us (802.11 SIFS)
MAC layer IEEE 802.11 DCF
Packet size 1024 bytes

Packet rate 4 pkt/s

Propagation model Free space propagation
Transmission range 250 meters

Simulated area Variable size

fixed density of nodes

Nominal channel bit rate | 2 Mbps
Mobility model Random WayPoint (RWP
Simulated devices (SMHs) 200.000, 1.000.000

2) WiFra scalability: First of all, it has been evaluated the scalability of therttisted simulator in the standard
configuration, that is without any mechanism to improve tbemunication and the computation load balancing
(i.e. GAIA+ OFF).

In Figure 3, it is shown the scalability of the simulator in atdbuted execution environment composed of a
variable number of desktop PCs (from 1 up to 8) each one eqdifgy Dual Core Intel Pentium IV CPU 3.0
GHz with 1 GB of RAM and interconnected by Fast Ethernet netw@00 Mbit/s). In reference to the previous

definition, each PC is a PEU and, in this case, allocates desltfgjy The simulation efficiency was measured in
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Scalability evaluation: WiFra
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Fig. 3. Speed-up obtained by the WiFra framework. LPs = 1, B. &imulated scenario with 200.000 SMHs.

terms of speed-up, that is the rate of execution times betweenolithic execution and distributed one. In this
scenario, the simulated time was set to 3 seconds and thdasatitarea was populated by 200.000 SMHSs. In
Figure 3 is shown a good scalability withP = 2 (i.e. the simulation was executed on 2 different PEUs) with
a speed-up value (1.77) that is near the theoretical maxitfibat is 2). With 4 LPs we have a further speed-up
increase but the result is quite far from the theoretical imaxn (that in this case is 4). Finally, the distributed
simulation composed of 8 LPs is still faster than monoliitfid> = 1) but shows a speed-up (1.97) lower than with
LP =4.

These results are in line with our expectations, for mangars. As described in previous sections, the perfor-
mance of a distributed simulator can be seen as a trade-bffeba computation and communication costs. The
distributed architecture has a communication cost thatilshbe balanced by the gain of the parallel execution.
If the communication cost is lower than the gain we are in gmes of a speed-up of the distributed execution
(LP = 2,4,8) with respect to monolithic{P = 1). Conversely, if the communication cost is higher than the
gain we have a slow-down. The model used in this performawmakiaion is highly populated but dominated by
communications (i.e. the synchronisation requirementgosed by the 802.11 DCF protocol). In this case each
simulated device has very little computational tasks. Tdtaltamount of computation required to complete each
step of the simulation is sufficient to overload 2 PEUs buuffisient in the case of 4 and 8. In this case, adding
more PEUs to the execution architecture increases the coination overhead without any computational gain. A
real world scenario characterised by complex user-levplieations on top of the wireless protocol would require
a higher amount of computation and therefore would benef#t afrger number of PEUSs.

A further reason for the speed-up result with? = 8 is due to the “slowest LP problem” described in Section
IV-B. The cluster of PEUs is homogeneous in terms of hardwarg. CPU model and RAM) but with some
differences in terms of real performances. Without a loalduticing mechanism (in this case GAIA+ is OFF)

a small difference in the background load of each PEU or inrné®vork, leads to a slow-down of the whole
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simulation. Furthermore, increasing the number of PEUsequently increases the heterogeneity of the execution
architecture.

In accordance with our aim to use COTS computing resourdes,performance evaluation was conducted
overnight, using a cluster of desktop PCs with the same heneleharacteristics but with possible small differences

in the installed software and running tasks. The results ahymindependent runs were collected and carefully

8

Fig. 4. Speed-up obtained by the WiFra framework with GAIA+FOFON. LPs = 1, 2, 4, 8. Simulated scenario with 200.000 SMHs.

scrutinised: we present the mean values.

Scalability evaluation:
WiFra and GAIA+
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3) Performance of the GAIA+ framework:he same scenario described in Section V-D2 was simulatabliag
the GAIA+ framework. In Figure 4 is shown that withP = 1 (that is a monolithic simulation) GAIA+ is obviously
unable to provide a speed-up. However, it is interesting thdoes not introduce any significant overhead. With
LP =2 and LP = 4, GAIA+ provides a small increase in the speed-up (up to 5.7Bl¥ small gain in terms of
performances shows that the communication in the simulatadk! is mainly due to synchronisations. As described
in Section IV-A, GAIA+ clusters the highly interacting SMHis reduce the communication overhead but is unable
to reduce the synchronisation overhead due to the syndatiom mechanism. In the simulated model, the amount
of communication that is related to the model semantic iseggiinall: the communication ratio of each device is 4
pkt/s with respect to a synchronisation time-step ofus0(see Table 1). Also in this case, a realistic model with a
higher amount of communication related to the model woutilease the gain obtained by the GAIA+ framework.
With LP = 8, GAIA+ has a performance gain of 16.2%, in this case the lmadncing mechanism reacts to
the heterogeneity of the execution architecture. Dynaligieajusting the number of SMHs allocated in each LP,
GAIA+ obtains a more uniform system, in terms of executiopesp

4) Distributed simulation of very large-scale wirelesswetks: The last part of this performance evaluation is
about the detailed simulation of a very large-scale wisetestwork, composed of 1.000.000 of nodes. The execution
architecture was a cluster of 32 PEUs, Dual Core Intel PentM CPU 3 GHz with 1 GB RAM also in this case
interconnected by Fast Ethernet. The distributed sinanaivas composed of 32 LPs, one for each PEU. Initially
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each PEU allocated1.250 SMHs (that is 1.000.000 / 32). During the simulation the kbatancing mechanism
has triggered re-allocations to adapt the load of each PBEbketperformance of the hardware and background load

(e.g. other users’ tasks, batch tasks of the operating mysts.).

WiFra and GAIA+

35000 (Final allocation of SMHSs)

30000

25000
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Fig. 5. Distributed simulation of 1.000.000 of SMHs (32 PEUS)located SMHs on each PEUs, final allocation.

WiFra and GAIA+
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Fig. 6. Distributed simulation of 1.000.000 of SMHs (32 PEWslJocated SMHs on each PEUSs, differences from initial edition.

In Figure 5 is shown the final allocation of SMHs for each PEhg tlifference from the initial allocation is
relevant (see Figure 6). It is worth noting that the effextperformance of some PEUs is quite different from the
expected performances. PEUs 11, 21, 22 and 32 have a fingatidio of less tha5.000 SMHSs, with a difference
of more than6.000 units with respect to the initial allocation. Another groapPEUs (4, 15, 17 and 18) have a
limited reduction in the number of allocated SMHs. The rarimgj PEUs have increased the number of SMHs to
compensate the reductions in other PEUSs. In this last gritngpincrease is quite uniform across all PEUSs.

Under the performance viewpoint, the detailed simulatibwiveless networks composed of million of nodes

is not feasible following the monolithic approach. A singbeecution units is unable to represent so large models
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Distributed simulation:
GAIA+ ON vs. OFF
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Fig. 7. Wall-Clock-Time for the simulation of 1.000.000 of SiHover 32 PEUs). Each step in the X-axis equals to 200 tinpssté
simulated time.

without severe performance degradation. In Figure 7, we lsampared the WCT for the simulation of the scenario
described above, with and without the GAIA+ framework (tlsaGAIA+ ON and OFF). For readability, each step
in the graph is obtained by the aggregation of 200 time-stémulated time. The results confirm that GAIA+
provides a limited but valuable gain in the time required tonplete the simulation. After the warm-up phase,
the mechanism is able to speed-up the execution and to gravidain in terms of performance (up to 21%).
The gain is limited but quite stable for the rest of the sirtiala For the reasons described in Sections V-D2 and
V-D3, this result is very promising. The simulation of moremplex and realistic user level-applications would
further increase the gain obtained by the GAIA+ frameworkrtirermore, execution architectures composed of
very heterogeneous PEUs would sharply increase the gaainebit by the GAIA+ framework with respect to a
static allocation of SMEs. The warm-up phase is necessarth®o GAIA+ heuristics to collect information about
the simulated model and to tune the parameters of the nmogréthised mechanism. As described in Section IV-B,
the presence of a very large number of simulated entitieskisyaissue in the design and implementation of the
heuristics. In the considered scenario, the amount of sitedlentities is so high that a badly designed heuristic
would be very expensive in terms of computation time and mrgmequirements.

5) Evaluation of the proposed mechanism&s stated in Section |, in our vision, the reduction of the eom
munication overhead and the load-balancing are differgpeets of the same problem. Therefore our proposed
solution is a combined approach that is based on two main améins (i.e. communication overhead reduction
and load-balancing management), each one implemented asset of heuristics. In previous sections, we have
shown the experimental evaluation of our proposal in presex different scenarios and execution environments.
The estimate of the contribution of each mechanism to thBopeance results is a rather complex task due to the
many variables and the influencing factors that should bentalk account to obtain an unbiased evaluation.

The performance of the communication overhead reductiochar@sm (Section IV-A) is highly influenced by
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the characteristics of the simulated model. For exampke athount of communication required by the simulation
model with respect to computation. In presence of a CPUigite model, the gain obtained by the reduction of the
communication overhead is negligible with respect to thematation time. On the other hand, it is worth noting
that this part of GAIA+ can reduce the communication coshefinteraction among simulated entities but is unable
to reduce the communication cost due to the synchronisatidhe distributed architecture. Therefore, in presence
of simulation models with very frequent synchronisationriess, the positive effect of the mechanism could be
highly reduced. For these reasons, the wireless modeldimtex in Section V-D1 results as highly unfavourable
for the evaluation of the communication overhead reductimchanism. In previous works [Bononi et al. 20044a],
[Bononi et al. 2004b], we demonstrated that, in presencess éxtreme scenarios, the proposed approach leads to
significant speed-up of parallel and distributed simutaid=inally, in presence of imbalances in the hosts running
the simulation, the load-balancing mechanism (SectioB)\s the main responsible of the speed-up obtained by
GAIA+. This is due to the characteristics of the consenetiynchronisation algorithm used in the simulation. The
presence of synchronisation barriers requires that eachalsRo reach the barrier. Therefore, even a single LP that

is slow in reaching the barriers is a huge bottleneck for tilers that are idle while waiting for synchronisation.

VI. CONCLUSIONS AND FUTURE WORK

In this work we have proposed a new approach, based on thatmigof simulated entities, to increase the per-
formance of distributed simulations. In our vision, two orgproblems of distributed simulation, the communication
overhead reduction and the load-balancing, have to be sedifferent aspects of the same problem. Consequently,
a joint approach is strictly necessary.

Our solution, based on specifically tailored heuristicalloeates the simulated entities clustering the highly
interacting components of the simulation and reacting tmmatation and communication imbalances. A fine-
grained model of a wireless protocol has been used for thtorpeance evaluation of the proposed approach.
The results demonstrate that distributed simulation isaaibdée approach for the simulation of large scale models.
Furthermore, big clusters of desktop PCs can be used for ¢ailetl simulation of very large-scale wireless
networks, composed of 1.000.000 of nodes.

As a future work we plan to further increase the adaptivityhef proposed mechanism: the distributed simulation
architecture should dynamically adapt the number of exacuinits with respect to the runtime requirements. For
example, the framework should be able to detect if the ei@mt@rchitecture is overloaded, and therefore activate
more PEUs. Conversely, if the execution architecture isedodded then it should shrink the number of PEUSs,
to reduce communication and synchronisation costs. Wesienvia mechanism that automatically reconfigures
the simulation, monolithic or distributed and vice versapending on the runtime requirements and the dynamic
characteristics of the execution architecture. Followthig approach, the usability of simulation tools would be

greatly improved, fostering a wider adoption of the disttédl simulation techniques.
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