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Abstract

In recent years many popular interactive computer games have gained online remote multiplayer functionalities, supported
by standard Internet communication protocols and architectures. Due to the heterogeneous communication infrastructures and
network asymmetries, some users (i.e. clients) may be suffering slow, congested and unreliable Internet connections, while others
may have access to fast and reliable links. A different rate and latency in the delivery of users’ commands and event notifications
may lead to unfairness issues during the game play. Specifically, this happens in the class of real time and interactive games,
which require frequent and prompt event notifications and reactions among all the users competing in the gaming environment. A
dynamic adaptation of the gaming architecture to the limitations of the communication infrastructure could be exploited to reduce
these problems. The communication network topology and performance should be considered in the management of the client
allocation to the set of multiple servers. In this paper we present a simple client migration algorithm which can be adopted on a
generic multi-player, multi-server online gaming architecture. Client migration among the servers of the gaming infrastructure is
exploited to adapt to the dynamic performances of the general communication network infrastructure. The proposed mechanism
has been modeled and simulated for the class of distributed multi-player and multi-server interactive games, implemented over a
general communication network infrastructure. Results show a significant fairness improvement, more homogeneous performances,
and the absence of significant overheads.

I. INTRODUCTION

The explosive growth of the Internet, and the even widely deployed access and mobile connectivity to the Internet infrastruc-
ture and services, motivated the designers of computer-games to create new, interactive, and distributed multi- player games,
or even to add online multi-player capabilities to existing ones [1]. The aim of an interactive multiplayer game is to allow a
set of players’ avatars to interact in a virtual environment, by following specific interaction schemes and game rules. Avatars
are implemented as client applications coordinated and managed by a set of distributed servers. The gaming infrastructure is
realized by the set of servers, the distributed client applications, the interaction rules and game management protocols, and the
interconnecting communication network infrastructure. In simple interactive gaming infrastructures, the interaction policy may
be straight-forward: e.g in turn-based games, every client gets its own turn to move and every other client would see the action
as the expected interaction event (like in a multiplayer card game). This gaming infrastructure does not have critical network
and fairness requirements [2], because every user waits its turn until other users performed their own actions in a predefined
order. The more challenging and attractive set of today’s multiplayer games lets the users to live and act by proactively
generating local and personal actions (i.e. events), which may affect every other user within the game context [3], [4]. The
density and the timing constraints of interactions among the dynamic set of clients, obviously depends on the game type and
characteristics. It is worth noting that massive, highly interactive games may be critical to be supported in a distributed way,
under the communication viewpoint. In this paper we are interested in the class of highly interactive distributed multiplayer
games, where each user may take any decision at anytime (i.e. with no predefined turns), like in a virtual battlefield game.
For this class of games, the design phase of the communication protocols, the gaming infrastructure, and the communication
infrastructure is far more interesting and challenging to be designed. The main problem faced in this paper is the heterogeneity
and dynamicity in the latency that could exist on the Internet connections among many peer-players connected to the distributed
multi- servers architecture supporting the game execution.

A. Work Motivation

Many multiplayer real-time games (e.g. Ultima Online [5]) require that the player sends “commands” (e.g. walk, take
objects, fight, shoot) to a virtual character (i.e. the avatar). Commands are messages sent to one server, over the communication
infrastructure (i.e. the network), in order to be evaluated and executed. Event execution generates causally dependent actions
and environment changes, to be immediately notified to other characters in the gaming environment. Failing to send a command
or an event message, or sending it too late, may cause damages to the avatar evolution (death, injury, loss of resources), and
may result in unjustified penalties for the player. For this reason, users with high-latency or low-bandwidth Internet connections
may be more disadvantaged than their opponents supported by fast connections. The unfairness problem frequently leads to
a generalized users’ annoyance: slow users get frustrated because they lose easily despite their skills [6], [7], while fast (and
fair) users get bored because they win easily thanks to their network performances. This would translate in less users buying
the game and subscribing the online gaming services.

The communication protocols adopted for these games usually do not offer specific solutions for this problem. On the other
hand, a general conservative approach is to send less data to slow users [8], thus lowering the game detail. The solution to achieve
fairness by reducing the game detail could be unpractical and questionable, under the player satisfaction viewpoint. Anyway,
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this could be the only possible solution for specific types of games and infrastructures with limited network support. Other
gaming infrastructures could obtain an improved fairness by exploiting network services implemented below the application,
without having to touch the internal details of the game protocol. On the other hand, this would require a complete management
of the Quality of Service over end-to-end connections, which is not currently implemented and supported on the Internet. Our
proposal in this paper follows a complementary approach. We assume a common network scenario, an online (Internet-based)
multiplayer real-time game supported by a distributed multi-server gaming architecture. We argue that the fairness may be
improved by acting on the dynamic migration of clients among servers, with minor-changes to the game code, and without
requiring to rewrite and redesign any communication protocol. Moreover, we do not assume any specific gaming protocol’s
semantics, because we are interested in proposing and evaluating a mechanism that could be adapted to any generalized gaming
architecture [9], [10]. In addition to the previous considerations, another motivation for the proposed migration-based approach
is explained in the following. Let us assume that upon the initial connection of a new player to the gaming infrastructure, the
client application is connected to the server with the best tradeoff between network performance and server load, among the
available ones. Many policies could be defined to realize a ranking evaluation of available servers. Unfortunately, due to the
highly dynamic characteristics of server loads and network performances, any optimal initial allocation would soon become
sub-optimal. As an example, network loads, link utilization and router congestion over generalized multi-purpose networks are
subject to fast and unpredictable modifications over time, so that any optimal choice at time t may become suboptimal after few
seconds. In practice, our proposal is to let the clients, being connected to one server, to migrate towards the “most performant”
server evaluated at runtime. This migration should be evaluated on the basis of server-measurement metrics and heuristic
policies. Also, the density of migrations should be controlled, as an example by performing migrations only at predefined
time-interval boundaries, or after some critical events occurred. In this way, any client should pursue the most performant
server, by dynamically measuring the network and server performances. The performance estimates and the migration heuristic
should be defined in order to avoid overheads and useless fluctuations of clients.

This paper is structured as follows. In section II we will describe a general architecture for online massive real-time
multiplayer games, named MMORPGs, or Massive Multiplayer Online Role-Playing Games [11, pp. 1–2]. We illustrate the
implementation and the behavior of the proposed gaming architecture, together with the fairness problems that may be obtained.
In section III we sketch the model of the proposed architecture, and we define the set of parameters that will be adopted in the
model to characterize the gaming and the network issues used in the simulations. Parameter values have been obtained from
the analysis and aggregation of traces obtained from real systems. In section IV we will discuss the implementation of the
client migration, devoted to the improvement of the game fairness issues. In section V we will present the experimental results
of our simulation tests. Different implementations of the migration scheme and heuristics will be discussed and evaluated.
Conclusions and future works will conclude the paper.

II. ONLINE GAMING ARCHITECTURES

Big multi-player gaming systems are usually based on a pool of server geographically distributed across one or more countries
[12]. These servers share the knowledge about the “simulated world” where the characters move and act. When a user wants
to play the game in multiplayer mode, he/she is required to connect to one of the available servers, where the game activity is
currently on, then he/she starts playing. The choice of the server is usually made by following two possible implementations:
i) a round-robin DNS entry or ii) the “nearest server” selection. The concept of “near” server is usually intended as the
“geographically nearest” to the client. Both of these solutions are not guaranteed to provide the best performances. Another
solution is to connect to the “topologically nearest” server, i.e. the server reachable by traversing the minimum number of
intermediate routers within the network structure. Additional advantage could be given by taking into account the congestion
along the path to connect to the server.

Our goal is to analyze how the communication between a client and one of the servers could be improved without touching
the network communication protocols, and by creating an additional, external layer with respect to the gaming infrastructure
[13].

Specifically, the class of games we are interested in contains the so-called MMORPGs, or Massive Multiplayer Online
Role-Playing Games [11, pp. 1–2]. This class of games is becoming more and more popular on the Internet, and includes
multi-player games that simulate a “virtual world”. A great number of characters, either under human or computer control, live
and act in the virtual world, performing some cooperative or competitive tasks. MMORPGs are the computer-based counterpart
of the well-known RPGs (Role Playing Games) [14]. Each new player creates its own avatar with a set of characteristics
(e.g. strength, intelligence, initial resources) and starts playing the avatar life in the simulated world, by interacting with other
players in order to complete tasks, to compete with enemies, to collect shared and available resources, and to improve the
characteristics and skills of his avatar.

MMORPGs may involve a great number of concurrent players. While in other games, like strategic and first-person-shooters
[15], [16], the maximum number of interacting players seldom exceeds a dozen [17], MMORPG servers usually have to manage
hundreds, or even thousands avatars co-existing in the same virtual world [18].
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A. MMORPGs Gaming Architecture
The typical MMORPGs gaming structure is a simple client-server architecture: each player runs a client, which connects to

one out of a pool of many servers. The client and the server start to exchange gaming data as long as the user plays, then the
client disconnects. Generally speaking, the gaming protocol governing the system evolution is a simple request/reply scheme:
clients send commands to one server, and servers synchronize and send “replies” to the clients. A client/server connection
starts when a client sends a login request to one of the servers. In our simulations, we implemented a round-robin DNS entry
selection of the server to connect to. When a server receives a login request, it performs a service admission control, to admit
a limited maximum number of clients, and then it sends a reply, either an accept or a reject message to the client. Upon a
negative answer, the client will retry with another server in round robin fashion until a server accepts it. After a successful
“login” the client starts sending play requests that will be received by the server, enqueued and processed on the next timestep
boundary. After having processed a request, the server replies to the client by sending him the updated information about the
“world” evolution. This communication and synchronization process goes on until the client stops playing. When the client
stops playing, it sends a logout request to the server, it waits for an acknowledgment, and then it quits the game. To maintain
full synchronization for unactive players, servers send proactively updates to every client in every timestep. The implemented
server synchronization protocol is trivial: each server periodically sends the system status updates to every other server.

Our assumptions include that the servers are connected to each other by high speed links. Every server maintains a replica
of the simulated world where the locally managed subset of avatars evolves by executing the player’s commands. Every player
continuously sends unicast messages to its server, while servers send update information to every other server in order to manage
the time synchronization and updates of the virtual environment. This is an inefficient way [19] to handle synchronization, and
state sharing, in particular when the number of servers is high. The number of messages among servers grows as Θ(n2) where
n is the number of servers. These system (and modeling) assumptions were selected in order to consider the most general
scenario, and a “worst case” implementation that would be highly affected by the distributed communication bottlenecks. It is
worth noting that this choice about the server-to-server communication would not affect positively the results of our migration
mechanism. Also, in our model we do not depend on a specific network topology.

B. Time Management and Fairness
We define as Virtual Time (VT) the time in the virtual world, as Simulation Time (ST) the time concept considered for

synchronization issues in the distributed simulation, and as Wall Clock Time (WCT) the time we are living [20, pp. 27– 30].
The VT is defined by discrete steps of fixed duration (typically in the order of tenths of a WCT second). During each VT step a
client can perform at most one move, that is, a single command can be sent from the client to the server. With this system (and
modeling) assumption, we can control the maximum speed of every player under a common upper bounded speed limit. Every
command and update received during step t− 1 is enqueued on the server managing the avatar, and it will be processed at the
beginning of the step t in FIFO order, by causing an update of the virtual environment. The timestepped approach for time
management introduces a controlled upper bounded delay for the execution of commands. This can be exploited to introduce a
positive fairness principle for clients’ commands. The fairness can be improved because fast clients can be limited to perform
only one move per timestep, and the timestep size can be tuned such that the same opportunity can be given, on the average,
to the majority of slow clients. In this way, all the clients achieve more chances to fairly compete under the remote control
by their respective players. Obviously, the timestep duration is a tuning parameter and should not be excessive, in order to
maintain a smoothed game evolution.

In addition, a MMORPG presents the same issues and the same concept of a real- time simulation. Like in real time
simulations, under the interaction viewpoint, the speed gap between the VT of the avatars and the WCT of the players must
be negligible.

To summarize, we are trying to define a very general architecture and modeling guidelines for real time MMORPGs
infrastructures. The concept of timestep was considered in this architecture as a way to support and control the fairness among
players, at the communication system level. Basically, the timestep parameter defines the upper rate of commands that both
quick clients and slow ones are allowed to sustain. Other similar ways to obtain the fairness can be designed and implemented
[21]. The method we used appeared to be quite simple and effective.

III. THE GAMING ARCHITECTURE MODEL

In this section we describe a simple and generic model for the architecture of a massive online multiplayer gaming
architecture. The target of our modeling and simulation investigation will be a qualitative comparison between a “classic”
gaming and network infrastructure scenario and the same scenario with the effects of the migration mechanism. The definition
of an accurate network model or a specific network infrastructure, is out of scope for our goal, because it would be difficult
to design and would result in less general results [22]. For the same reasons, we do not aim to define an accurate model of a
specific game, and its architecture, but we prefer to characterize a class of online interactive games in general. On the other
hand, we would like to capture the network and gaming infrastructure dynamics and characteristics in our model, in order to
obtain significant results. To this end, we performed an accurate selection of modeling parameters and their respective values
and distributions.
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A. The Model Parameters

The communication protocol at the basis of our architecture has been developed after the accurate analysis of network
traffic traces obtained by different real games [23], [24], [5], [3], [25]. Since most of these games are commercial and
proprietary we could not examine the protocol details. The only possibility we have is to capture and analyze the real network
traffic generated, to infer the parameters’ values to be adopted for the communication protocols’ modeling 1. This allows us
to simplify the model of the network architecture. It must be cleared that the traffic model obtained is characterizing the
considered gaming application in isolation. Additional network traffic generated by concurrent applications in real systems
would increase the network congestion and the communication bottlenecks. This fact is not critical for our analysis and results,
since we are interested in qualitative comparison of alternative solutions, under the same assumptions. To sum up, we are
able to characterize the gaming requirements by means of synthetic model parameters obtained by real traces. Details will be
presented in the remaining part of this section.

B. The Simulated Network Model

The focus of the network modeling is to determine transmission times for the packets, over generalized network infrastructures
(inspired by the Internet).

As in real scenarios, we model a packet based network communication based on a standard TCP/IP (or UDP/IP) Internet
protocol architecture. On the other hand, we do not include a detailed management of transmission failures and packet
retransmissions. The network is assumed to be reliable, since the scope of our analysis does not include fault-tolerance, routing
and link failure issues [28]. We assume that communication paths are reliable and we model the effect of network congestion
as a variable network latency parameter. This latency effect represents the only overhead effect of network congestion that we
include in our model. Packet loss will be modeled as consequence effect of communication delays.

By relaxing most of network details, we assumed that transmission times are mainly determined by link bandwidth and link
latency network parameters [22]. We assume the network is organized in a numbered set of A areas, roughly corresponding
to big Autonomous Systems, Internet Service Provider networks or Internet carriers (see fig. 1).

A parameterized matrix L is defined, such that each pair of network areas, e.g. (i, j), 0 ≤ i, j ≤ A, is assigned a base
latency Li,j . This base latency value parametrizes a right-shifted lognormal distribution. This distribution is adopted by a
pseudo-random generator, to obtain synthetic samples of the latency values for simulated packets traveling from area i to area
j and vice versa. The matrix is configured with low base latency values when i = j (i.e. when the two hosts belong to the
same area). The right-shifted distribution offset is motivated by the characteristics of the link technology, introducing a “lower
bound” for their respective latencies. Dynamic congestion can be modeled at runtime during the simulation by varying the
base latencies values in the matrix L.

Each client and server host is assigned a connection class that identifies the type of connection the host adopts (i.e. analog
modem or DSL for clients, various kinds of ATM links for servers). Each connection class corresponds to a nominal bandwidth
value, affecting the speed of packets sent and received by that host h. This parameter is also used to define a latency multiplicator
factor Kh that will be used to determine the network latencies.

Both servers and clients are distributed in uniform way in the network areas. When one host (hi) belonging to area i sends
a packet to another host (hj) belonging to area j, we assume that this packet will follow a path whose end-to-end latency
can be modeled as follows. The end-to-end latency is calculated as a summatory of intra-area and inter-area latencies and
transfer time. Transfer time is defined as the packet size divided by the link bandwidth of the slowest link in the path, with
no variability introduced by Medium Access Control and Data Link policies. As an example, a packet sent with an analog
modem comes out from the modem at 33 Kbps, no matter how much fast it will travel in the rest of the network.

If the hosts hi1 and hi2 belong to the same area i, we call the end-to-end latency as intra-area latency. It results that
intra-area base latencies can be found on the diagonal of the matrix. In this scenario, the end-to-end latency is determined as
a composition of two expressions:

Latency(hi1,Khi1
, hi2,Khi2

) =
Khi1

∗ Li,i + Khi2
∗ Li,i

(1)

where Khi1
∗ Li,i is the initial intra-area latency of host hi1, and Khi2

∗ Li,i is the final intra-area latency of the destination
host hi2, ∀hi1, hi2 ∈ i.

If hi and hj belong to different areas, the overall latency is determined as a composition of three expressions:

Latency(hi,Khi
, hj ,Khj

) =
Khi

∗ Li,i + Li,j + Khj
∗ Lj,j , (i 6= j)

(2)

1We wish to thank for their help the system administrators of Midian and Nexus gaming networks’ infrastructures [26], [27]
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Fig. 1. An example of the network areas

where Khi
∗Li,i is the initial intra-area latency of area i, Lij is the intermediate extra-area latency which is the latency of the

network connecting the originating and destination areas, and Khj
∗ Lj,j is the final intra-area latency of the destination area

j.
The choice of the model parameter values (distribution parameters [29], [30], connection classes characteristics [31],

percentage of connection classes) has been made i) with direct tests and traffic analysis of real network connections [23],
[24], ii) by gathering data from some Italian ISPs, carriers and important web sites, and iii) by collecting information from
other papers and articles.

In figures 2 and 3 we show the experimental ping-time (latency) results obtained when investigating the latency distribution
inside the GARR network, and between the GARR network and the Teleglobe network (belonging to two different autonomous
systems). This shows that the typical latency distributions for ping times, both inside the same area (figure 2) and across two
or more areas (figure 3), could be well approximated by a right-shifted lognormal distribution [33], [34].

The distribution of the various connection classes for carriers and big ISPs has been determined for our model, thanks to
information from the Italian Internet Exchange [35]. The resulting information about line-types, line-bandwidths and percentage
of presence values are reported in table I.

The distribution of the various connection classes for gaming clients has been determined for our model, thanks to information
from the Midian gaming network [26]. The resulting information about line-types, upstream and downstream line-bandwidths,
connection class latency-multiplicators (Kh) and the percentage of presence values are reported in table II.
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Fig. 2. Latency inside the GARR Network [32]

Name Bandwidth (KB/sec) Presence
DS3 44, 736 30%
STS-1 51, 840 10%
STS-2 103, 680 20%
STS-3 155, 520 10%
STS-6 311, 040 10%
STS-9 466, 560 10%
STS-24 1, 244, 160 10%

TABLE I
MODEL PARAMETER DISTRIBUTION OF CARRIERS AND BIG ISPS

Up (KB/sec) Down (KB/sec) Latency multip. Presence
POTS 36.6K 27 27 5.0 4%

POTS 56K 40 25 4.0 24%

ISDN 64K 64 64 3.0 20%

ISDN 128K 128 128 3.0 6%

ADSL 256K 128 256 2.0 20%

ADSL 640K 128 640 2.0 14%

Optical fiber 10000 10000 2.0 12%

TABLE II
MODEL PARAMETERS DISTRIBUTION OF GAMING CLIENTS
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Fig. 3. Latency between the GARR Network and the Teleglobe Network

To complete the network model parameterization we analyzed the traffic generated by real games with the aim of discovering
information about the packets size distribution and packet correlation. The proprietary protocols and packet formats used by
gaming platforms hidden all details, hence our observation was based on network monitoring. We discovered that while clients
send out few different types of packets, a server generates variable sized packets. Anyway, the typical packet size is 42 bytes.
Hence, we considered this value as the standard play request/reply packet size, and we used different sizes for other types of
event messages.

C. The Server Model

While we found good data and references about traffic and network characterization of modeling parameters [36], [25], [17],
we had some difficulties in finding concrete values for the server computation model parameters (e.g. CPU times). Hence, to
characterize the CPU computation time distributions of the servers we executed external observations, and we measured the
time passed from the arrival of a request to the server and the departure of the reply.

IV. THE MIGRATION MECHANISM

In classical gaming implementations, each client chooses its server at the beginning of its playing, and keeps using it until
the end of the playing session. A round-robin selection policy among the available servers is simple, but may be quite rough.
Currently, there is no information to assist the client in making a “good choice” at the beginning of the game session. For
this reason we suggest the introduction of a client migration mechanism in our architecture. The migration mechanism would
allow a client to disconnect from a server, and to connect to another server, while continuing to play in user’s transparent way.
The migration mechanism should be activated when a client “realizes” that the server connection is slow, or another server is
reachable by means of a more fast connection. In this way a better exploitation of the overlay network of server replicas could
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be performed. One critical point about the migration mechanism is the design and implementation of the migration heuristics
to assist clients in the decision to migrate, and also in the selection of a new destination server. In the following we describe
two approaches that we considered in our analysis.

As we said before, the communication between a client and a server is affected by two important factors: bandwidth and
latency. From the client viewpoint, the bandwidth factor has less influence over the game performances: a high percentage of
the packets are quite small [37] so that they can be sent on a low bandwidth link without saturating it. Anyway, the effect of
a low bandwidth link can be mitigated by sending less detailed information to the players on that link.

The most critical parameter we are deadling with is end-to-end (E2E) network latency. The E2E latency is a composition
of delays introduced by single network links realizing a path from the client to the server and vice versa. Most of the times,
the latency of the first hop (usually from the client to the router of its area boundary) cannot be negotiated or controlled by
the client. On the other hand, the client can control the game server to connect to, and this allows the client to have many
possible alternative paths with different latency performances to equivalent servers. While the first communication step usually
has quite low latency variance, the path between the originating ISP and the remote server can have much less predictable
latencies due to external Internet traffic aggregation. Due to the network latency variations, the initial choice of the optimal
server could not be valid undefinitely. To maintain the optimality, a runtime adaptive selection and migration to adapt to the
network conditions is preferable.

The client migration can improve the fairness, and can be applied with a limited amount of work on the existing game code,
while other methods would require relevant changes to the protocols [21], [9].

Big software houses that create and distribute online multiplayer games consider the network latency a serious problem, such
that they manage and invest in servers and networks to offer their customers good network performances and to be competitive
with other game producers. Other gaming networks [38], [39], [40] are independent to software houses that produce games,
and appear to be quite open to publish technical details about their network structures and protocols.

To maintain the E2E latency upper bounded, many gaming infrastructures, and specifically MMORPGs infrastructures,
consider the network partitioned in different wide areas, covering whole countries or group of countries [5]. Unfortunately, to
maintain massive and global gaming infrastructures, areas can be wide, including multiple servers that appear with different
performances to clients. This argumentation is in favour of adopting a migration algorithm, for the motivation above.

Intuitively, the aim of the migration mechanism is to make the latency curve distribution of the clients as much homogeneous
as possible. This means that the game service is fairly available, because the latency of a client is similar to the latency of
other clients. A timestepped time management like the one defined in previous section could additionally play in favour of
the fairness and latency clustering-effect of clients, by letting fast clients to be synchronized to the rithm sustainable by slow
clients.

A. The Migration Heuristics

When a client determines it should try to move to another server, it has to decide which one is the “best choice” for its new
connection. As said before, the link bandwidth is not a critical factor, and cannot be modified, because the slowest network
segment usually is the one which connects a user to his ISP.2

A good migration heuristic should consider at least two other factors: the network latency between the client and the server,
and the server load. We assume that each client performs periodic pings towards every possible candidate server, to obtain
dynamic estimates of the network latencies. This method is simple, it gives quite a good approximation of the “real” latency
and allows a experimental validation of assumptions. Moreover, the ping rate allows to control the overheads introduced.

The pitfall of the ping method is that a well connected server could result the target for many clients connections, and this
may saturate the server capacity. In the proposed architecture, we propose a simple load balancing policy based on service
admission principles: a server keeps track of the number of currently connected clients and refuses to accept a new connection
if its load becomes too high (causing a global performance loss). In future improvements of this architecture, servers could
exchange load indicators, by defining a new dynamic distributed load-balancing technique.

1) The migration trigger: A very important point is the algorithm that activates a client migration. We mainly focused on
the simplest of all, named simple migration, and in addition, we made some tests on a more complex algorithm that we called
anticipated migration.

2) Simple migration: The simple migration algorithm is the following: once every a fixed number of seconds the client
sends a ping probe (ICMP ECHO REQUESTs) to the servers in the list. If a different server appears to be faster than the
current one, then a migration process will be activated. Otherwise, no client migration is performed. This policy is simple and
stable, because the frequency of migrations can be tuned by paying some reactivity to network dynamics.

3) Anticipated migration: The anticipated migration evaluates migration opportunities at fixed time intervals, like previous
policy. In addition, clients collects runtime statistics on the network round trip time by exploiting commands/replies from/to the
server. It the runtime statistics indicate that the current connection is becoming too slow, then the client should try to anticipate
the migration attempt. Many possible implementations can be obtained by considering different statistics and thresholds.

2For instance, a user connecting with a 56Kbps modem is mainly limited by this bandwidth bottleneck, not by his server’s.
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B. The Migration Protocol

The client starts from the first server of the list, and if the migration is considered useful, it sends a packet to its current server
by asking him to migrate to a new one. Upon migration request, the current server takes care of contacting the new server.
If the new server has sufficient available resources for a new client, the current server sends the client data to the new server.
When the new client instance is active on the new server the client is notified and starts sending packets to the new server.
Meanwhile, the old server forwards the received packets to the new server and routes back the replies (like in Mobile IP care
of address agents). In this way the migration process is transparent to the client that keeps playing during the migration with
no additional delays. If a server sends a negative reply to a migration request, the client asks for the following server in its list,
until the end of the list is reached, or the migration is completed. The migration protocol is simple, and can be implemented
as a logout/login sequence with some intermediate steps to move the client status data and the packet forwarding during the
migration phase. The key assumption is that every server maintains the information of managed clients only, together with
the information of the whole virtual environment, so that no environment information needs to be migrated. The migration
implementation may be dependent to the game platform. Anyway, our preliminary considerations over generalized gaming
architectures shown that dependencies from the core of a gaming system should not require complex adaptation efforts.

V. EXPERIMENTAL RESULTS

A. Simulation Tool

In order to simulate the proposed migration-based architecture, we do not use any existing simulation tool or runtime, but we
created a dedicated simulator, opportunely optimized for the RAM management, in order to overcome the memory bottleneck
in a massive simulation [18]. Another reason for this simulator choice was the model simplicity and simulator speed. Existing
powerful runtime environments (e.g. [41]), would have required a complex management and modeling efforts not motivated by
the need for high simulator potential. Given our assumptions, the simulation model is quite simple, it is highly modular, and
does not require complex simulation services. We want to simulate MMORPG networks with thousands clients connected at
the same time, where each client communicates with at least one server and each server communicates with every other server.
We implemented, tested and validated a dedicated event-driven simulator written in C language, with good performances and
low memory requirements. The discrete event-based simulation paradigm was preferred to a time stepped simulation [42, pp.
7–9, 93, 94] mainly because the behavior of thousands simulated objects generating few events is more efficient to be simulated
via discrete event-based simulation.

B. Simulation setup

The simulation parameters have been discussed in previous sections, Specifically, we defined the values of the random
distributions parameters and their type, the percentage of clients and servers of each connection class, the size distribution of
variable kinds of packets [37], the bandwidth and latency characteristics of common network connection classes and the CPU
time required to manage play requests.

Our typical simulation scenario is composed by a network with 20 gaming servers and 2000 concurrent clients. All the
simulated scenarios’ parameters, like the number of clients and servers, the time each client spends in a connection and
the frequency it sends play requests have been chosen in order to reflect a real scenario. A number ranging from 10 to 20
independent runs has been executed for each test in order to achieve a good confidence level [42, pp. 253–259].

C. Performance Results

The main performance index will be referred to as play time, which is defined as the time a client has to wait for a reply
after it has sent a request. The play time is expressed in milliseconds (ms) and it is used to compare the fairness of a gaming
infrastructure under many different scenarios.

The first graph (fig. 4) is a static comparison between the scenario characterized by the original MMORPGs architecture and
the same architecture with the simple migration algorithm (see section IV). The figure shows the distribution of clients (Y axis)
with respect to their respective average play time values (on the X axis). The solid line represents the original architecture,
while the dashed line illustrates the effect of the “simple migration” mechanism over the same scenario. With the original
architecture, the play times appear to be clustered around at least 5 sets of distant local aggregation values. This demonstrates
that clients would fall with a certain distribution in groups characterized by different play times performances, resulting in
unfair gaming service. The play times appear to be much more concentrated with the simple migration mechanism. There is
a small group in the right part of the graph that depends on the clients with very slow connections, and another big group
on the left with really good average performances. It is worth noting that, in the migration-enabled system, a timestep around
220 ms would satisfy in fair way a majority of clients, with respect to the classical implementation.

In figure 5 we show the runtime evolution of a fairness index. We think that our concept of “fairness” may be represented
as the variance of the average play times of the clients in a given time interval (1 second). If the variance value is low, each
player experiences a latency which is similar, on the average, to the others players’. On the other hand, a big variance value
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Fig. 4. Distribution of clients over average play time values: simple migration vs. no migration

means that the play times are much more heterogeneous, hence some players suffer the unfairness of the gaming infrastructure.
The original architecture (solid line) leads to higher variance value than the same architecture with the simple migration. After
an initial transient phase, the migration-enabled architecture outperforms the classic architecture in terms of fairness. In table
III, we calculated the confidence intervals for the estimated play time variance. The narrow interval obtained by the simple
migration mechanism confirms the expectations about the generalized and uniform level of fairness obtained by the clients
of the gaming architecture. Quite surprisingly, the confidence interval for the fairness index obtained with the anticipated
migration heuristic mechanism is larger than the same index in the original architecture with no migration. This was due to the
fluctuating behavior of subsets of clients swinging between two servers, by introducing migration overheads and unbalanced
loads on the servers.

The analysis on the average value of the play times shows that the average time for a reply, i.e. the system interactivity, is
favoured by the introduction of the simple migration. This can be explained, as we can see from the figure 4, even if some
clients are subject to penalty (i.e. the first high spike in the distribution on the left of the solid line is shifted to the right in
the dashed one). The penalty for fast clients is quite limited and was considered as a consequence of our design, given the
initial assumptions. This fact is not critical, because it does not compromise the interactive potential of fast clients. As a good
news, this flattens the differences of play times between fast and slow clients.

In figure 6 we show the average play time of messages sent by all the clients in the simulated system during a given time
interval. It is clear that at runtime the simple migration mechanism gives the better results, with respect to the anticipated
migration scheme, which in turn outperforms the classical static (no migration) implementation.

Figure 7 shows the same index of previous figure 6, but this time the X axis is given by the number of moves performed,
which is related to the player life duration in the game. The X axis shows the numbered sequence of requests of each client,
and the Y axis reports the average play time of the i − th request by the set of clients that were involved in the simulation.
This performance index needs to introduce some preliminary considerations. First, this index is correct, since the rate of
commands sent by slow and fast clients is homogeneous and comparable. Second, each client remains connected for a certain
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No migration Simple migration Anticipated migration
Run replicas 10 10 10
Run samples 80,221 63,013 62,610
Transient samples 12,000 12,000 12,000
Average Play Time (ms) 2,816.69 1,203.03 1,664.48
Estimation of σ

2 4,766,163.53 965,389.76 4,809,603.78
Play Time Confidence int. 1,551.23 — 4,082.14 633.51 — 1,772.56 393.27 — 2,935.69
Play Time Conf. Interval width 2530.91 1139.05 2542.42

TABLE III
CONFIDENCE INTERVALS OF PLAY TIME VARIANCE (90-TH PERCENT CONFIDENCE LEVEL)

amount of time that has a pre-defined average value [43]. There are many motivations that justify this choice in the model
parameterization: mainly, slow clients are usually modem connected, hence they pay for time of connection, and, also, they
may experience sudden death of their avatars due to connection delays. The average number of messages sent by slow clients
falls around the middle of the X range in the figure, while fast clients perform longer playing activities. The solid line refers
to average play times in the architecture with no migration. With this scenario, the average client has a play time of about
250 ms at the beginning of the playing interval, and this index appears to decrease when the slow clients start to abandon the
game. After X = 8000 moves in the figure, the survived players in the game are mostly fast clients. This is shown in the
figure because average play time starts to decrease.

The dashed line shows the average client play times in the simple migration scenario. The average play time drops to a
low play time after the first migration assessment occurs. The fact that the dashed line converges to a constant value (instead
of decreasing like with the solid line) means that every client experiences a comparable play time, which is maintained also
when slow clients (e.g. Modem enabled) starts to leave the game, and this confirms the improvement in fairness.
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Fig. 6. Runtime average play time values (ms)

The fact that the average play time with no migration outperforms the play time with simple migration after X = 8000
moves can be explained because in the no migration scenario most of the slow clients already left the system and the reduced
number of clients increases the servers and network performances.

The anticipated migration heuristic has been evaluated with the same tests performed for the simple migration and no
migration mechanisms. The results shown that the anticipated migration scheme have a worst behavior than the simple migration.
A comparison between the two types of migration algorithms is shown in figure 8 and figure 9. The dashed line is for the
simple migration, the dotted one is for the anticipated migration. The analysis of simulation traces shown that the anticipated
migration scheme has some difficulties when there are two or more servers with a very similar latency. This makes a subset
of clients to swing between two servers, by introducing migration overhead and unbalanced loads on the servers.

VI. CONCLUSION AND FUTURE WORK

In this work, we presented an improved architecture model for online multiplayer games, focused on MMORPGs with
multiple replicated servers. We designed and implemented a simulator and a model for the gaming infrastructure and for a
general network used by clients and servers for their communications. Over the proposed gaming architecture we realized the
preliminary design of a client migration protocol and a couple of client migration heuristics. The migration mechanism realizes
a low cost dynamic adaptation of the gaming architecture to the limitations of the communication infrastructure. The proposed
mechanism has been simulated over the class of distributed multi- player and multi-server interactive games, implemented
over a general communication network infrastructure. Results show a significant fairness improvement, more homogeneous
performances, and the absence of significant overheads, with less or no modifications required to the gaming architecture.

Additional studies will be performed to extend the client migration mechanism: more efficient migration algorithms, new
heuristics tuned on new runtime statistics, and the refinement of communication protocols between servers. The creation
and design of gaming architectures with “database server” for the storage of player information, and “area servers” for the
elaboration of events in different areas of the simulated world [44] will be evaluated. The gaming architecture will be integrated
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by a pool of “proxies” accepting connections from the clients and forwarding their requests to the right area server [13], [45].
We will also investigate the possible decoupling and integration of the client migration and the remote and replicated server
execution.

More detailed and complete network and gaming architecture models will be completed and refined for simulation purposes.
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